• Title/Summary/Keyword: creep.

Search Result 1,894, Processing Time 0.022 seconds

Usefulness of Creep Work-Time ]Relation for Determining Stress Intensity Limit of High-Temperature Components (고온 구조물의 한계응력강도 결정을 위한 크리프 일-시간 관계식의 유용성)

  • Kim, Woo-Gon;Lee, Kyung-Yong;Ryu, Woo-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.750-757
    • /
    • 2003
  • In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W$\_$c/t$\^$p/ = B(where W$\_$c/ = $\sigma$$\varepsilon$ is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this Purpose, the creep tests for generating 1.0% strain for commercial type i16 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593$^{\circ}C$. The plots of log W$\_$c/ - log t showed a good linear relation up to 10$\^$5/ hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of isochronous stress-strain curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials.

Effect of Hardness and Substructure on Long-term Creep Behavior of Mod.9Cr-1Mo Steel (개량 9Cr-1Mo 강의 장시간 크리프거동에 미치는 경도와 하부조직의 영향)

  • 박규섭;이근진;정한식;김정호;정영관;엔도타카오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.168-176
    • /
    • 2004
  • Interrupted creep tests were carried out on the Mod.9Cr-1Mo steel in order to investigate the structural degradation during creep. The ranges of creep stress and temperature were from 71 to 167MPa and 873 to 923k, respectively. The change of hardness and tempered martensitic lath width were measured in the grip and gauge parts of interrupted specimens. The lath structure was thermally stable in static conditions, but was not stable during creep, and the structural evolution was enhanced by creep strain. The relation between the change in lath width and strain was described in the from, $\delta$W= a ($W_s-W_o$)$cdot;varepsilon$, where $\varepsilon$ is the strain, $W_o$is the initial lath width, $W_s$ is the final lath width depending solely on stress, and a is the constant of the magnitude of 0.67 $\mu$m /strain. The change in Victors hardness was expressed by a one-valued function of creep life consumption ratio. Based on the empirical relation between strain and lath width, a model was proposed to explain the relation between change in hardness and creep life consumption ratio. The model revealed that about 65$%$ of dislocations in lath structures were eliminated by the migration of subboundaries.

Thermal Creep Behavior of Advanced Zirconium Claddings Contained Niobium (Nb가 첨가된 신형 지르코늄 피복관의 열적 크리프 거동)

  • Kim Jun Hwan;Bang Je Geon;Jeong Yong Hwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.451-456
    • /
    • 2004
  • Thermal creep properties of the zirconium tube which was developed for high burnup application were evaluated. The creep test of cladding tubes after various final heat treatment was carried out by the internal pressurization method in the temperature range from $350^{\circ}C to 400^{\circ}C$ and from 100 to 150 MPa in the hoop stress. Creep tests were lasted up to 900days, which showed the steady-state secondary creep rate. The creep resistance of zirconium claddings was higher than that of Zircaloy-4. Factors that affect creep resistance, such as final annealing temperature, applied stress and alloying element were discussed. Tin as an alloying element was more effective than niobium due to solute hardening effect of tin. In case of advanced claddings, the optimization of final heat treatment temperature as well as alloying element causes a great influence on the improvement of creep resistance.

Critical Compressive Strain of Concrete under a Long-Term Deformation Effect Part I. Experiments

  • Nghia, Tran Tuan;Chu, In-Yeop;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This paper focuses on the effect of creep on the critical compressive strain (CCS) of concrete. The strain of concrete corresponding to the peak compressive stress is crucial in the selection of the ultimate yield strength of the reinforcing bar used in reinforced concrete columns. Among the various influencing factors, such as the creep, shrinkage, loading rate and confinement, the effect of creep and shrinkage is the most significant. So far, investigations into how these factors can affect the CCS of concrete have been rare. Therefore, to investigate the effect of creep and shrinkage on CCS, an experimental (part I) and a parametric study (part II) were conducted, as presented in these papers (part I considers creep effect, part II considers effect of creep and shrinkage). In part I, experiments pertaining to the loading age, loading rate, loading duration and loading and creep levels were conducted to study the effect of these variables on the CCS of concrete. It was found that the effects of the loading rate, loading age, and level and duration on the CCS of concrete were negligible. However, it is very important to consider the effect of creep.

Prediction of Creep Stress in High Temperature Piping System Using Elastic Follow-up Factor (탄성추종계수를 이용한 고온 배관계의 크리프 응력 예측)

  • Seo, Jun-Min;Youn, Gyo-Geun;Lee, Hyun-Jae;Oh, Young-Jin;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • When designing high temperature piping system, creep phenomena must be considered. Since ASME code does not provide detailed methods of design by rule (DBR) for high temperature piping, Finite element analysis should be performed. However, In the case of piping system with frequent design changes, creep analysis of the entire piping system for every change is ineffective and practically impossible. Therefore, based on elastic and elastic-plastic analysis, which takes a relatively short time, the creep stress is predicted by using elastic follow-up factor method provided in R5 code and plastic-creep analogy presented by Hoff. The predicted creep stress for a virtual piping system was compared with the creep analysis result and the two results showed similar stress relaxation tendency in time.

Creep behaviour of normal- and high-strength self-compacting concrete

  • Aslani, Farhad
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.921-938
    • /
    • 2015
  • Realistic prediction of concrete creep is of crucial importance for durability and long-term serviceability of concrete structures. To date, research about the behaviour of self-compacting concrete (SCC) members, especially concerning the long-term performance, is rather limited. SCC is quite different from conventional concrete (CC) in mixture proportions and applied materials, particularly in the presence of aggregate which is limited. Hence, the realistic prediction of creep strains in SCC is an important requirement for the design process of this type of concrete structures. This study reviews the accuracy of the conventional concrete (CC) creep prediction models proposed by the international codes of practice, including: CEB-FIP (1990), ACI 209R (1997), Eurocode 2 (2001), JSCE (2002), AASHTO (2004), AASHTO (2007), AS 3600 (2009). Also, SCC creep prediction models proposed by Poppe and De Schutter (2005), Larson (2007) and Cordoba (2007) are reviewed. Further, new creep prediction model based on the comprehensive analysis on both of the available models i.e. the CC and the SCC is proposed. The predicted creep strains are compared with the actual measured creep strains in 55 mixtures of SCC and 16 mixtures of CC.

The Time-Dependent Behavior Characteristic of Bottom Ash by Maximum Particle Size and Application of Creep Models (Bottom Ash의 최대입경에 따른 시간-의존적 거동 특성 및 크리프 모델 적용성 검토)

  • Kim, Tae-Wan;Son, Young-Hwan;Bong, Tae-Ho;Noh, Soo-Kack;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.9-16
    • /
    • 2013
  • This study finds the characteristics of long-term settlement of Bottom Ash and to review the application of Singh-Mitchell creep equation and Burgers Model to the creep behavior of Bottom Ash. In the undrained state, it was confirmed that creep behavior appeared in the range to 30-80 % of the maximum deviator stress by applying condition in other three stresses through triaxial compression test after isotropically consolidation. By using sieve analysis, it was compared to each sample that was passed through 9.5 mm, 2 mm, 0.25 mm sieves. Also, using Singh-Mitchell creep equation and Burgers Model, it was compared between the theoretical behavior and the observed behavior for each sample. In the result, it is found that creep behavior of Bottom Ash is similar to the theoretical behavior of Singh-Mitchell creep equation and Burgers Model in early stage and it is possible to predict creep behavior of Bottom Ash by these models.

Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope - examples and parametrical study

  • Kmet, S.;Holickova, L.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.591-607
    • /
    • 2004
  • The substance of the use of the derived non-linear creep constitutive equations under variable stress levels (see first part of the paper, Kmet 2004) is explained and the strategy of their application is outlined using the results of one-step creep tests of the steel spiral strand rope as an example. In order to investigate the creep strain increments of cables an experimental set-up was originally designed and a series of tests were carried out. Attention is turned to the individual main steps in the production and application procedure, i.e., to the one-step creep tests, definition of loading history, determination of the kernel functions, selection and definition of constitutive equation and to the comparison of the resulting values considering the product and the additive forms of the approximation of the kernel functions. To this purpose, the parametrical study is performed and the results are presented. The constitutive equations of non-linear creep of cable under variable stress history offer a strong tool for the real simulation of stochastic variable load history and prediction of realistic time-dependent response (current deflection and stress configuration) of structures with cable elements. By means of suitable stress combination and its gradual repeating various loads and times effects can be modelled.

The steady-state creep rate and creep-rupture life of 2024 Al alloy at high temperature (2024 Al 合金의 高溫正常 크리이프 變形速度와 크리이프 破斷壽命에 관한 硏究)

  • 오세욱;박경동;박인석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.513-519
    • /
    • 1988
  • Constant load creep tests have been carried out over a range of stresses at high temperatures. The experimental equations of the steady-state creep rate and creep-rupture life were respectively found to be related to the normalized applied-stress and temperature as ln.epsilon.$_{s}$ =6.10 on.sigma./ $E_{T}$-12.81*10$^{3}$ 1/T+15.98 (h $r^{-1}$) ln $t_{R}$=-6.24ln.sigma./ $E_{T}$+15.08*10$^{3}$1/T-23.66 (hr) and the equation of creep-rupture life had a good agreement with the expression of the Minimum-Commitment Method (MCM). However, the relationship between the steady-state creep rate and the creep-rupture life, noted by Monkman and Grant, lnt/snb R/ = mln.epsilon.$_{S}$+b made a considerable deviation against the present creep-rupture data. It is believed that this problem is to be discussed and investigated continually.lly.lly..

Creep Life Prediction of Pure Ti by Monkman-Grant Method (Monkman-Grant법에 의한 순수 Ti의 크리프 수명예측)

  • Won, Bo-Youp;Jeong, Soon-Uk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.352-357
    • /
    • 2003
  • Creep tests for Titan were carned out using constant-load at $600^{\circ}C$, $650^{\circ}C$ and $700^{\circ}C$. Material constants necessary to predict creep life were acquired from the experimental creep data. And the applicability of Monkman-Grant(M-G) and modified M-G relationships was discussed. It was discovered the log-log plot of M-G relationships between the rupure time(tr) and he minimum creep rate(${\varepsilon}_m$) was conditional on test temperatures. The slop of m was 2.75 at $600^{\circ}C$ and m was 1.92 at $700^{\circ}C$. However; the log-log plot of modified M-G relationships between $t_r/\varepsilon_r$ and $\varepsilon_m$ was indpendent on stresses and temperatures. That is the slop of m' was almost 3.90 in all the data. Thus, change M-G relationships to creep life prediction could be vtilized more reasonably than that of M-G relationships for type Titan. It was divided that the constant slopes never theless of temperatures of practical stresses in the modified relationship were due to an intergranular break grown by wedge-type cauities.

  • PDF