• Title/Summary/Keyword: creep performance

Search Result 193, Processing Time 0.025 seconds

Creep performance of concrete-filled steel tubular (CFST) columns and applications to a CFST arch bridge

  • Yang, Meng-Gang;Cai, C.S.;Chen, Yong
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.111-129
    • /
    • 2015
  • This paper first presents an experimental study of twelve specimens for their creep performance, including nine concrete-filled steel tubular (CFST) columns and three plain concrete columns, subjected to three levels of sustained axial loads for 1710 days. Then, the creep strain curves are predicted from the existing creep models including the ACI 209 model, the MC 78 model, and the MC 90 model, and further a fitted creep model is obtained by experimental data. Finally, the creep effects of a CFST arch bridge are analyzed to compare the accuracy of the existing creep models. The experimental results show that the creep strains in CFST specimens are far less than in the plain concrete specimens and still increase after two years. The ACI 209 model outperforms the MC 78 model and the MC 90 model when predicting the creep behavior of the CFST specimens. Analysis results indicate that the creep effects in the CFST arch bridge are significant. The deflections and stresses calculated by the ACI 209 model are the closest to the fitted model in the three existing models, demonstrating that the ACI 209 model can be used for creep analysis of CFST arch bridges and can meet the engineering accuracy requirement when lack of experimental data.

Effects of different creep feed types on pre-weaning and post-weaning performance and gut development

  • Heo, Pil Seung;Kim, Dong Hyuk;Jang, Jae Cheol;Hong, Jin Su;Kim, Yoo Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1956-1962
    • /
    • 2018
  • Objective: This experiment was carried out to determine the effects of different creep feed types on suckling performance and further adjustments to solid feed after weaning. Methods: A total of 24 multiparous sows and their litters were allotted to one of three treatment groups: i) provided highly digestible creep feed (Creep), ii) provided a pig weaning diet (Weaner), and iii) provided sow feed (Sow) as creep feed until weaning. After weaning, a total of 96 piglets were selected for evaluation of post-weaning performance. Results: For pre-weaning performance, the Creep treatment led to a significantly higher feed intake from 14 to 28 d (p<0.05) and higher body weight gain from 21 to 28 d than piglets that were provided other diets. However, after weaning, the Weaner treatment yielded a significantly higher feed intake and average daily gain than other treatments from 0 to 14 d after weaning (p<0.05); Creep treatment tended to generate lower villus heights in the duodenum than the other treatments (p = 0.07). Conclusion: Highly digestible creep feed improved pre-weaning performance, but feed familiarity and grain-based creep feed improved post-weaning performance.

Experimental investigation of creep and shrinkage of reinforced concrete with influence of reinforcement ratio

  • Sun, Guojun;Xue, Suduo;Qu, Xiushu;Zhao, Yifeng
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • Predictions about shrinkage and creep of concrete are very important for evaluating time-dependent effects on structural performance. Some prediction models and formulas of concrete shrinkage and creep have been proposed with diversity. However, the influence of reinforcement ratio on shrinkage and creep of concrete has been ignored in most prediction models and formulas. In this paper, the concrete shrinkage and creep with different ratios of reinforcement were studied. Firstly, the shrinkage performance was tested by the 10 reinforced concrete beams specimens with different reinforcement ratios for 200 days. Meanwhile, the creep performance was tested by the 5 reinforced concrete beams specimens with different ratios of reinforcement under sustained load for 200 days. Then, the test results were compared with the prediction models and formulas of CEB-FIP 90, ACI 209, GL 2000 and JTG D 62-2004. At last, based on ACI 209, an improved prediction models and formulas of concrete shrinkage and creep considering reinforcement ratio was derived. The results from improved prediction models and formulas of concrete shrinkage and creep are in good agreement with the experimental results.

Effects of Creep Feed with Varied Energy Density Diets on Litter Performance

  • Yan, L.;Jang, H.D.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1435-1439
    • /
    • 2011
  • This study was conducted to evaluate the effects of creep feed with different energy densities on litter performance. A total of 30 sows (Landrace${\times}$Yorkshire) and their litters were randomly assigned with 1, 2, or 3+parities into 1 of 3 treatments (10 sows). Dietary treatments were: i) CON (no creep feed), ii) LE (creep feed (DE 4,000 kcal/kg) from 5 d of age until weaning (21 d)), and iii) HE (creep feed (DE 5,000 kcal/kg) from 5 d of age until weaning). Each piglet was weighed at d 5, 10, 15, 21 (weaning), and d 7 postweaning to determine ADG. Creep feeding reduced concentrations of epinephrine, norepinephrine, and cortisol compared with those in CON group (p<0.05). Creep feeding reduced (p<0.05) the weaning-to-oestrus interval in sows. Piglets in the HE groups evidenced greater ADG (p = 0.024) and ADFI (p = 0.001) post-weaning than those in CON treatments. Creep feeding decreased (p<0.05) the suckling time of piglet in this study. In conclusion, creep feeding increased growth and feed intake of pigs after weaning. It can decrease the oestrus interval of sows. There was no difference between providing a high energy or a low energy creep fed diet to the piglets.

Effects of Varying Creep Feed Duration on Pre-weaning and Post-weaning Performance and Behavior of Piglet and Sow

  • Yan, L.;Jang, H.D.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1601-1606
    • /
    • 2011
  • 32 sows (Landrace${\times}$Yorkshire) and their litters were used to evaluate the effects of varying creep feed duration on pre-weaning, post-weaning performance of piglets and sows. Sows were randomly assigned with 1, 2 or 3+ parities into 1 of 4 treatments. Creep feeding was initiated at day 5, 10 and 15 from birth for treatment 1 (TRT1), 2 (TRT2) and (TRT3), respectively, with a control group provided no creep feed. In this study, TRT1 and TRT2 diets had reduced (p<0.05) the post-weaning diarrhea scores in piglets and the weaning-to-estrus interval and cortisol concentration in sows at weaning time compared with other treatments. Dietary TRT1 led to a higher (p<0.05) epinephrine and norepinephrine concentrations than other treatments. No differences (p>0.05) were noted in suckling, sleeping, fighting frequency and mortality in piglet and eating, standing times, backfat and body weight loss in sows. In conclusion, creep feed initiated from day 5 and 10 reduce diarrhea scores in piglets and benefit the estrus interval in sows compared with those initiated from day 15 and no-creep feeding diets, indicating creep feeding could improve the pigs and sows performance, especially those initiated from day 5 and 10.

Interpretation of Limit Creep Strain of Geogrids by Sherby-Dorm Plots (Sherby-Dorm Plots에 의한 지오그리드의 한계크리프변형률 해석)

  • Jeon, Han-Yong;Mok, Mun-Sung;Jin, Yong-Bum;Lim, Ji-Hye
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1572-1579
    • /
    • 2005
  • New procedure for evaluation of creep reduction factor using performance limit strain concept was introduced and confirmed through the creep test results. To determine the performance limit strain of the textile geogrid used in this study, the Sherby-Dorm Plots were applied and the results were compared with the results that applied existed limit strain criteria (GRI test method GG-4). The limit creep strain of the geogrid samples that determined by using the Sherby-Dorm Plots were all 11%. This value is more higher than the existed criteria as 10%. From this 11% limit strain the creep reduction factors were calculated at 100,000 hours design. It was resulted in 1.45 for all of the geogrid samples(8t/m, 10t/m). Finally, when it was compared with the creep reduction factors that using 10% criteria, there were some decrease of reduction factor values about $0.06{\sim}0.14$.

  • PDF

Simplified analysis of creep for preloaded reconstituted soft alluvial soil from Famagusta Bay

  • Garoushi, Ali Hossien Basheer;Uygar, Eris
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.157-169
    • /
    • 2022
  • Preloading of soft clays is a common ground stabilization method for improvement of compressibility and the undrained shear strength. The waiting period under preload is a primary design criterion controlling the degree of improvement obtained. Upon unloading the overconsolidation attained with respect to actual loads defines the long term performance. This paper presents a laboratory study for investigation of creep behavior of Famagusta Bay alluvial soft soil preloaded under various effective stresses for analysis of long term performance based on the degree of overconsolidation. Traditional one-dimensional consolidation tests as well as modified creep tests are performed on reconstituted soft specimens. Compressibility parameters are precisely backcalculated using one dimensional consolidation theory and the coefficient of creep is determined using the traditional Cassagrande method as well as two modified methods based on log cycles of time and the inflection of the creep curve. The test results indicated that the long term creep can be successfully predicted considering the proposed method. The creep coefficients derived as part of this method can also be related to the recompression index (recompression index, swelling index) considering the results of the testing method adopted in this study.

Thermal creep effects of aluminum alloy cladding on the irradiation-induced mechanical behavior in U-10Mo/Al monolithic fuel plates

  • Jian, Xiaobin;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.802-810
    • /
    • 2020
  • Three-dimensional finite element simulations are implemented for the in-pile thermo-mechanical behavior in U-Mo/Al monolithic fuel plates with different thermal creep rates of cladding involved. The numerical results indicate that the thickness increment of fuel foil rises with the thermal creep coefficient of cladding. The maximum Mises stress of cladding is reduced by ~85% from 344 MPa on the 98.0th day when the creep coefficient of cladding increases from 0.01 to 10.0, due to its equivalent thermal creep strain enlarged by 3.5 times. When the thermal creep coefficient of Aluminum cladding increases from 0 to 1.0, the maximum mesoscale stress of fuel foil varies slightly. At the same time, the peak mesoscale normal stress of fuel foil can reach 51 MPa on the 98.0th day for the thermal creep coefficient of 10, which increases by 60.3% of that with the thermal creep un-occurred in the cladding. The maximum through-thickness creep strain components of fuel foil differ slightly for different thermal creep coefficients of cladding. The dangerous region of fuel foil becomes much closer to the heavily irradiated side when the creep coefficient of cladding becomes 10.0. The creep performance of Aluminum cladding should be optimized for the integrity of monolithic fuel plates.

Modelling creep behavior of soft clay by incorporating updated volumetric and deviatoric strain-time equations

  • Chen Ge;Zhu Jungao;Li Jian;Wu Gang;Guo Wanli
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.55-65
    • /
    • 2023
  • Soft clay is widely spread in nature and encountered in geotechnical engineering applications. The creep property of soft clay greatly affects the long-term performance of its upper structures. Therefore, it is vital to establish a reasonable and practical creep constitutive model. In the study, two updated hyperbolic equations based on the volumetric creep and deviatoric creep are respectively proposed. Subsequently, three creep constitutive models based on different creep behavior, i.e., V-model (use volumetric creep equation), D-model (use deviatoric creep equation) and VD-model (use both volumetric and deviatoric creep equations) are developed and compared. From the aspect of prediction accuracy, both V-model and D-model show good agreements with experimental results, while the predictions of the VD-model are smaller than the experimental results. In terms of the parametric sensitivity, D-model and VD-model are lower sensitive to parameter M (the slope of the critical state line) than V-model. Therefore, the D-model which is developed by incorporating the updated deviatoric creep equation is suggested in engineering applications.

Evaluation of Physical Properties and Long-term Stability of Expansion Materials for Emergency Repair by Temperature (긴급복구용 팽창재료의 온도에 따른 물리적 특성 및 장기 안전성 평가)

  • Park, Jeongjun;Kim, Kisung;Kang, Hyounhoi;Kim, Ju-Ho;Hong, Gigwon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.79-88
    • /
    • 2018
  • In this study, the changes of the expansion and strength according to the temperature of the emergency repairing expansion material were examined by cup foaming test and uniaxial compressive strength test, and the accelerated compression creep test was carried out to confirm the long term stability. Ramp & Hold test and accelerated compressive creep test were performed to evaluate the creep performance. The short - term creep test was used to determine the initial creep strain of the expanding material. The isothermal method using time - To evaluate the long - term compressive creep performance.