Browse > Article
http://dx.doi.org/10.12989/gae.2022.28.2.157

Simplified analysis of creep for preloaded reconstituted soft alluvial soil from Famagusta Bay  

Garoushi, Ali Hossien Basheer (Department of Civil Engineering, Engineering Faculty, Eastern Mediterranean University)
Uygar, Eris (Department of Civil Engineering, Engineering Faculty, Eastern Mediterranean University)
Publication Information
Geomechanics and Engineering / v.28, no.2, 2022 , pp. 157-169 More about this Journal
Abstract
Preloading of soft clays is a common ground stabilization method for improvement of compressibility and the undrained shear strength. The waiting period under preload is a primary design criterion controlling the degree of improvement obtained. Upon unloading the overconsolidation attained with respect to actual loads defines the long term performance. This paper presents a laboratory study for investigation of creep behavior of Famagusta Bay alluvial soft soil preloaded under various effective stresses for analysis of long term performance based on the degree of overconsolidation. Traditional one-dimensional consolidation tests as well as modified creep tests are performed on reconstituted soft specimens. Compressibility parameters are precisely backcalculated using one dimensional consolidation theory and the coefficient of creep is determined using the traditional Cassagrande method as well as two modified methods based on log cycles of time and the inflection of the creep curve. The test results indicated that the long term creep can be successfully predicted considering the proposed method. The creep coefficients derived as part of this method can also be related to the recompression index (recompression index, swelling index) considering the results of the testing method adopted in this study.
Keywords
creep; oedometer test; preloading; recompression index; secondary compression; soft soil;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Wu, Z.X., Jin, Y.F. and Yin, Z.Y. (2013), "Nonlinear creep behavior of normally consolidated soft clay", In Constitutive Modeling of Geomaterials (pp. 145-148). Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-32814-5_16.   DOI
2 Wu, Z., Deng, Y., Cui, Y., Zhou, A., Feng, Q. and Xue, H. (2019), "Experimental study on creep behavior in oedometer tests of reconstituted soft clays", Int. J. Geomech., 19(3), 04018198. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001357.   DOI
3 Yin, J.H. (2006), "Elastic visco-plastic models for the timedependent stress-strain behaviour of geomaterials", In Modern trends in geomechanics (pp. 175-190), Springer, Berlin, Heidelberg, Germany.
4 Yin, J.H. (1999), "Non-Linear creep of soils in oedometer tests", Geotechnique, 49(5), 699-707. https://doi.org/10.1680/geot.1999.49.5.699.   DOI
5 Leroueil, S., Kabbaj, M., Tavenas, F. and Bouchard, R. (1985), "Stress-strain-strain rate relation for the compressibility of sensitive natural clays", Geotechnique, 35(2), 159-180. https://doi.org/10.1680/geot.1985.35.2.159.   DOI
6 Yin, J.H. and Graham, J. (1989), "Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays", Can. Geotech. J., 26(2), 199-209. https://doi.org/10.1139/t89-029.   DOI
7 Yin, J.H. (2015), "Fundamental issues of elastic viscoplastic modeling of the time-dependent stress-strain behavior of geomaterials", Int. J. Geomech., 15(5), A4015002. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000485.   DOI
8 Yin, J.H, Zhu, J.G. and Graham, J. (2002), "A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification", Can. Geotech. J., 39(1), 157-173. https://doi.org/10.1139/t01-074.   DOI
9 Aboshi, H. (2004), "Long-term effect of secondary consolidation on consolidation settlement of marine clays", Proceedings of the Advances in Geotechnical Engineering: The Skempton Conference - Proceedings of a Three Day Conference on Advances in Geotechnical Engineering, Organised by the Institution of Civil Engineers, London, UK, on 29-31 March 2004.
10 Alibrahim, B. and Uygar, E. (2021a), "Nonlinear calculation method for one-dimensional compression of soils", Arab. J. Sci. Eng., https://doi.org/10.1007/s13369-021-06270-7.   DOI
11 Alibrahim, B. and Uygar, E. (2021b), "Influence of compaction method and effort on electrical resistivity and volume change of cohesive soils", KSCE J. Civ. Eng., 25(7), 2381-2393. https://doi.org/10.1007/s12205-021-0419-9.   DOI
12 Azari, B., Fatahi, B. and Khabbaz, H. (2016), "Assessment of the elastic-viscoplastic behavior of soft soils improved with vertical drains capturing reduced shear strength of a disturbed zone", Int. J. Geomech., 16(1), B4014001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000448.   DOI
13 Barden, L. (1969), "Time dependent deformation of normally consolidated clays and peats", J. Soil Mech. Found. Div., 95(1). https://trid.trb.org/view/127300.
14 Crawford, C.B. (1964), "Interpretation of the consolidation test", J. Soil Mech. Found., 91(5), 146-147.
15 Bjerrum, L. (1967), "Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings", Geotechnique., 17(2), 83-118. https://doi.org/10.1680/geot.1967.17.2.83.   DOI
16 Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.   DOI
17 Chen, X., Luo, Q. and Zhou, Q. (2014), "Time-dependent behaviour of interactive marine and terrestrial deposit clay", Geomech. Eng., 7(3), 279-295. https://doi.org/10.12989/GAE.2014.7.3.279.   DOI
18 Deng, Y.F., Cui, Y.J., Tang, A.M., Li, X.L. and Sillen, X. (2012), "An experimental study on the secondary deformation of Boom clay", Appl. Clay Sci., 59, 19-25. https://doi.org/10.1016/j.clay.2012.02.001.   DOI
19 Dhowian, A.W. and Edil, T.B. (1980), "Consolidation behavior of peat", Geotech. Test. J., 3(3), 105-114. https://doi.org/10.1520/GTJ10881J.   DOI
20 Fox, P.J. (2003), Consolidation and Settlement Analysis, The Civil Engineering Handbook 2, (Eds., Chen, W.F. and Liew, J.Y.R.), Washington, D.C, USA.
21 Fox, P.J., Edil, T.B. and Lan, L.T. (1992), "Cα/Cc concept applied to compression of peat", J. Geotech. Eng., 118(8), 1256-1263. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1256).   DOI
22 Gofar, N. and Sutejo, Y. (2007), "Long term compression behavior of fibrous peat", Malaysian J. Civil Eng., 19(2), 14-26.
23 Kabbaj, M., Tavenas, F. and Leroueil, S. (1988), "In situ and laboratory stress-strain relationships", Geotechnique, 38(1), 83-100. https://doi.org/10.1680/geot.1988.38.1.83.   DOI
24 Nash, D.F.T., Sills , G.C. and Davison, L.R. (1992), "One-dimensional consolidation testing of soft clay from bothkennar", Geotechnique, 42(2), 241-256. https://doi.org/10.1680/geot.1992.42.2.241.   DOI
25 Casagrande, A. (1936), "The determination of pre-consolidation load and its practical significance", Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Mass.
26 Jamiolkowski, M. (1988), "New developments in field and laboratory testing of soils", Proceedings of the 11th international conference on soil mechanics and foundation engineering, San Francisco, California, USA, August.
27 Fox, P.J., Roy-Chowdhury, N., Edil, T.B., Juarez-Badillo, E., Mesri, G., Stark, T.D. and Chen, C.S. (1999), "Discussions and closure: secondary compression of peat with or without surcharging", J. Geotech. Geoenviron. Eng., 125(2), 160-165. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(160).   DOI
28 Golhashem, M.R. and Uygar, E. (2020), "Volume change and compressive strength of an alluvial soil stabilized with butyl acrylate and styrene", Constr. Building Mater., 255, 119352. https://doi.org/10.1016/j.conbuildmat.2020.119352.   DOI
29 Hong, Z.S., Yin, J. and Cui , Y.J. (2010), "Compression behaviour of reconstituted soils at high initial water contents", Geotechnique, 60(9), 691-700. https://doi.org/10.1680/geot.09.P.059.   DOI
30 Jesmani, M., Vaezi , R. and Kamalzarem, M. (2012), "Correlation between Cα/ Cc ratio and index parameters of soils", Q. J. Eng. Geol. Hydroge., 45(2), 207-220. https://doi.org/10.1144/1470-9236/09-060.   DOI
31 Karunawardena, A., Oka, F. and Kimoto, S. (2011), "Elasto-viscoplastic modeling of the consolidation of Sri Lankan peaty clay", Geomech. Eng., 3(3), 233-254. https://doi.org/10.12989/gae.2011.3.3.233.   DOI
32 Le, T.M., Fatahi, B. and Khabbaz, H. (2012), "Viscous behaviour of soft clay and inducing factors", Geotech. Geological Eng., 30(5), 1069-1083. https://doi.org/10.1007/s10706-012-9535-0.   DOI
33 Le, T.M., Fatahi, B. and Khabbaz, H. (2015), "Numerical optimisation to obtain elastic viscoplastic model parameters for soft clay", Int. J. Plasticity, 65, 1-21. https://doi.org/10.1016/j.ijplas.2014.08.008.   DOI
34 Head, K.H. (1998), Manual of Soil Laboratory Testing: Effective Stress Tests, John Wiley & Sons Ltd, Chichester.
35 Sridharan, A. and Rao, A. S. (1982), "Mechanisms controlling the secondary compression of clays", Geotechnique, 32(3), 249-260. https://doi.org/10.1680/geot.1982.32.3.249.   DOI
36 Zhu, Q.Y., Yin , Z.Y., Hicher, P.Y. and Shen, S.L. (2016), "Nonlinearity of one-dimensional creep characteristics of soft clays", Acta Geotechnica, 11(4), 887-900. https://doi.org/10.1007/s11440-015-0411-y.   DOI
37 Miao, L. and Kavazanjian, E. (2007), "secondary compression features of Jiangsu soft marine clay", Mar. Georesour. Geotec., 25(2), 129-144. https://doi.org/10.1080/10641190701380258.   DOI
38 Mitchell, J.K. (2005), Fundamentals of Soil Behavior, (3rd Ed.), New York, John Wiley & Sons, inc, Hoboken, New Jersey, Canada.
39 Robinson, R.G. (2003), "A Study on the beginning of secondary compression of soils", J. Test. Eval., 31(5), 388-397. https://doi.org/10.1520/JTE12362J .   DOI
40 Sridharan, A. and Prakash, K.(1998), "Characteristic water contents of a fine-grained soil-water system", Geotechnique, 48(3), 337-346. https://doi.org/10.1680/geot.1998.48.3.337.   DOI
41 Suneel, M., Park, L.K. and Im, J.C. (2008), "Compressibility characteristics of Korean marine clay", Mar. Georesour. Geotec., 26(2), 111-127. https://doi.org/10.1080/10641190802022478.   DOI
42 Terzaghi, K. (1943), Theoretical Soil Mechanics, JohnWiley & Sons, New York.
43 Walker, L.K. (1969), "Undrained creep in a sensitive clay", Geotechnique, 19(4), 515-529. https://doi.org/10.1680/geot.1969.19.4.515.   DOI
44 Leroueil, S., Tavenas, F. and Brucy, F .(1979), "Behavior of destructured natural clays", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 105(6), 759-778. https://doi.org/10.1016/0148-9062(79)90037-8.   DOI
45 Luo, Q. and Chen, X. (2014), "Experimental research on creep characteristics of Nansha soft soil", Scientific World J., 2014. https://doi.org/10.1155/2014/968738.   DOI
46 Mckinley, J.D. and Sivakumar , V. (2009), "Coefficient of consolidation by plotting velocity against displacement", Geotechnique, 59(6), 553-557. https://doi.org/10.1680/geot.7.00130.   DOI
47 Mesri, G., Ajlouni, M.A., Feng ,T.W. and Lo, D.O.K. (2017), "Surcharging of soft ground to reduce secondary settlement", Proceeding of the 3rd Int. Conf. on Soft Soil Engineering, Hong Kong, December 2001.
48 Mesri, G., and Choi, Y.K. (1985),. "Settlement analysis of embankments on soft clays", J. Geotech. Eng., 111(4), 441-464. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(441).   DOI
49 Mesri, G., Rokhsar, A. and Bohor, B.F. (1975), "Composition and compressibility of typical samples of mexico city clay", Geotechnique, 25(3), 527-554. https://doi.org/10.1680/geot.1975.25.3.527.   DOI
50 Lei, H., Wang, X., Chen, L., Huang, M. and Han, J. (2016), "Compression characteristics of ultra-soft clays subjected to simulated staged preloading", KSCE J. Civil Eng., 20(2), 718-728. https://doi.org/10.1007/s12205-015-0343-y.   DOI
51 ASTM D 2435. (2011), "Standard test methods for one-dimensional consolidation properties of soils using incremental loading", The Annual Book of ASTM Standards.
52 Yong, R.N. and Warkentin B.P. (1966), Introduction to Soil Behavior, Macmillan, New York.
53 Lei, H., Feng, S. and Jiang, Y. (2018), "Geotechnical characteristics and consolidation properties of Tianjin marine clay", Geomech. Eng., 16(2), 125-140. https://doi.org/10.12989/gae.2018.16.2.125.   DOI
54 Golhashem, M.R. and Uygar, E. (2019), "Improvement of internal stability of alluvial clay from Famagusta Bay, Cyprus, using copolymer of butyl acrylate and styrene", Environ. Eng. Geosci., 25(4), 289-300. https://doi.org/10.2113/EEG-2205 .   DOI
55 Li, Q., Ng, C.W.W. and Guo-bin, L. (2012), "Low secondary compressibility and shear strength of shanghai clay", J. Central South Univ., 19(8), 2323-2332. https://doi.org/10.1007/s11771-012-1278-9.   DOI
56 Fatahi, B., Le, T.M., Le, M.Q. and Khabbaz, H. (2013), "Soil creep effects on ground lateral deformation and pore water pressure under embankments", Geomech. Geoeng., 8(2), 107-124. https://doi.org/10.1080/17486025.2012.727037.   DOI
57 Ladd, C.C., Foott, R. and Ishihara, K. (1978), "Stress-deformation and strength characteristics. state-of-the-art report", Int. J. Rock Mec. Min. Sci. Geomech. Abstracts, 15(2), 421-494. https://doi.org/10.1016/0148-9062(78)91692-3.   DOI