• Title/Summary/Keyword: creep crack growth rate

Search Result 34, Processing Time 0.018 seconds

Transition from Cycle-Dependent to Time-Dependent Fatigue Crack Propagation at Creep Temperature of SUS 304 Steel (SUS 304鋼 의 크리이프 溫度領域 에 관한 時間依存型 및 사이클依存型 疲勞크랙 傳播 의 遷移)

  • 유헌일;주원식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.539-547
    • /
    • 1985
  • The low-cycle fatigue crack growth behavior of SUS 304 Stainless steel was investigated at 650.deg. C by the nonlinear fracture mechanics. Crack Propagation can be separated in to cycle-dependent and time-dependent, the former is correlated with .DELTA. $J_{f}$ , J-intergral range and the latter is correlated with J', modified J integral. Transition from cycle-dependent to time-dependent crack growth was successfully predicted using the .betha. hypothesis, which was proposed by the authors on the basis of an analysis on the interaction of elastic and creep strain. To investigate the reliability of .betha.-hypothesis, experimenting by the change of stress-level, stress rate and frequency, following conclusions were obtained. (1) High temperature fatigue crack propagation was separated into cycle-dependent and time-dependent. (2) Transition of crack propagation was predicted by .DELTA. $J_{c}$/.DELTA.$_{f}$ or .betha. (3) Lower limit in cycle-dependent crack propagation was obtained..

Method to Determine Elastic Follow-Up Factors to Predict C(t) for Elevated Temperature Structures (이차하중을 받는 고온 구조물의 C(t) 예측을 위한 탄성추종 계수 결정법)

  • Lee, Kuk-Hee;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.759-768
    • /
    • 2012
  • This paper proposes a method to determine the elastic follow-up factors for the $C(t)$-integral under secondary stress. The rate of creep crack growth for transient creep is correlated with the $C(t)$-integral. Elastic follow-up behavior, which occurs in structures under secondary loading, prevents a relaxation of stress during transient creep. Thus, both the values of $C(t)$ and creep crack growth increase as increasing elastic follow-up. An estimation solution for $C(t)$ was proposed by Ainsworth and Dean based on the reference stress method. To predict the value of $C(t)$ using this solution, an independent method to determine the elastic follow-up factors for cracked bodies is needed. This paper proposed that the elastic follow-up factors for $C(t)$ can be determined by elastic-plastic analyses using the plastic-creep analogy. Finite element analyses were performed to verify this method.

Correlation Between Transient Regime and Steady-State Regime on Creep Crack Growth Behavior of Grade 91 Steel (Grade 91 강의 크리프 균열성장 거동에 대한 천이영역과 정상상태영역의 상관 관계)

  • Park, Jae-Young;Kim, Woo-Gon;Ekaputra, I.M.W.;Kim, Seon-Jin;Kim, Eung-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1257-1263
    • /
    • 2015
  • A correlation between the transient regime and steady state regime on the creep crack growth (CCG) for Grade 91 steel, which is used as the structural material for the Gen-IV reactor systems, was investigated. A series of CCG tests were performed using 1/2" CT specimens under a constant applied load and at a constant temperature of $600^{\circ}C$. The CCG rates for the transient and steady state regimes were obtained in terms of $C^*$ parameter. The transient CCG rate had a close correlation with the steady-state CCG rate, as the slope of the transient CCG data was very similar to that of the steady state data. The transient rate was slower by 5.6 times as compared to the steady state rate. It can be inferred that the steady state CCG rate, which is required for long-time tests, can be predicted from the transient CCG rate obtained from short-time tests.

The Basic Study on Fatigue Crack Growth Behavior of SiC Whisker Reinforced Aluminium 6061 Composite Material (SiC 휘스커 보강 Al 6061 복합재료의 피로균열진전 특성에 관한 기초 연구)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2374-2385
    • /
    • 1994
  • SiCw/Al composite material is especially attractive because of their superior specific strength, specific stiffness, corrosion fatigue resistance, creep resistance, and wear resistance compared with the corresponding wrought Al alloy. In this study, Fatigue crack growth behavior and fatigue crack path morphology(FCPM) of SiC whisker reinforced Al 6061 alloy with 25% SiC volume fraction and Al 6061 allay were performed. Result of the fatigue crack growth test sgiwed that fatigue crack growth rate of SiCw/Al 6061 composite was slower than that of Al 6061 matrix therefore it was confirmed that Sic whisker have a excellent fatigue resistance. And Al 6061 matrix had only FCPM perpendicular to loading direction. On the other hand SiCw/Al 6061 composite had three types in fatigue crack path morphology. First type is that both sides FCPM of artificial notch are perpendicular to loading direction. Second type is that a FCPM in artifical notch has slant angle to loading direction and the other side FCPM is perpendicular to loading direction. Third type is that both sides FCPM of notch have slant angle to loading direction. It was considered that this kinds of phenomena were due to non-uniform distribution of SiC whisker and confirmed by SEM observation for fracture mechanism study.