• Title/Summary/Keyword: credit rating model

Search Result 68, Processing Time 0.023 seconds

Developing Medium-size Corporate Credit Rating Systems by the Integration of Financial Model and Non-financial Model (재무모형과 비재무모형을 통합한 중기업 신용평가시스템의 개발)

  • Park, Cheol-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.71-83
    • /
    • 2008
  • Most researches on the corporate credit rating are generally classified into the area of bankruptcy prediction and bond rating. The studies on bankruptcy prediction have focused on improving the performance in binary classification problem, since the criterion variable is categorical, bankrupt or non-bankrupt. The other studies on bond rating have predicted the credit ratings, which was already evaluated by bond rating experts. The financial institute, however, should perform effective loan evaluation and risk management by employing the corporate credit rating model, which is able to determine the credit of corporations. Therefore, in this study we present a medium sized corporate credit rating system by using Artificial Neural Network(ANN) and Analytical Hierarchy Process(AHP). Also, we developed AHP model for credit rating using non-financial information. For the purpose of completed credit rating model, we integrated the ANN and AHP model using both financial information and non-financial information. Finally, the credit ratings of each firm are assigned by the proposed method.

Developing Corporate Credit Rating Models Using Business Failure Probability Map and Analytic Hierarchy Process (부도확률맵과 AHP를 이용한 기업 신용등급 산출모형의 개발)

  • Hong, Tae-Ho;Shin, Taek-Soo
    • The Journal of Information Systems
    • /
    • v.16 no.3
    • /
    • pp.1-20
    • /
    • 2007
  • Most researches on the corporate credit rating are generally classified into the area of bankruptcy prediction and bond rating. The studies on bankruptcy prediction have focused on improving the performance in binary classification problem, since the criterion variable is categorical, bankrupt or non-bankrupt. The other studies on bond rating have predicted the credit ratings, which was already evaluated by bond rating experts. The financial institute, however, should perform effective loan evaluation and risk management by employing the corporate credit rating model, which is able to determine the credit of corporations. Therefore, this study presents a corporate credit rating method using business failure probability map(BFPM) and AHP(Analytic Hierarchy Process). The BFPM enables us to rate the credit of corporations according to business failure probability and data distribution or frequency on each credit rating level. Also, we developed AHP model for credit rating using non-financial information. For the purpose of completed credit rating model, we integrated the BFPM and the AHP model using both financial and non-financial information. Finally, the credit ratings of each firm are assigned by our proposed method. This method will be helpful for the loan evaluators of financial institutes to decide more objective and effective credit ratings.

  • PDF

Credit Management Method to Improve Credit Rating (신용등급 향상을 위한 신용관리 방법)

  • Lee, Sangwon;Kwon, Young Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.319-320
    • /
    • 2013
  • In these days, an individual is evaluated by his or her credit. So, it is very critical for an individual to know his or her credit rating and then to try to improve the credit rating. But, there are few services to analyze credit status for an individual and inform the person of the credit. In fact, it could be impossible to let a person know how to improve his or her credit rating. Against this backdrop, we research on a credit management model to analyze credit status of an individual rapidly and propose individual-customized method to improve the credit rating. We set up the model and design it in detail. This servie would certainly make it convenient for an individual to retrieve credit rating and improve it.

  • PDF

Corporate Credit Rating using Partitioned Neural Network and Case- Based Reasoning (신경망 분리모형과 사례기반추론을 이용한 기업 신용 평가)

  • Kim, David;Han, In-Goo;Min, Sung-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.2
    • /
    • pp.151-168
    • /
    • 2007
  • The corporate credit rating represents an assessment of the relative level of risk associated with the timely payments required by the debt obligation. In this study, the corporate credit rating model employs artificial intelligence methods including Neural Network (NN) and Case-Based Reasoning (CBR). At first we suggest three classification models, as partitioned neural networks, all of which convert multi-group classification problems into two group classification ones: Ordinal Pairwise Partitioning (OPP) model, binary classification model and simple classification model. The experimental results show that the partitioned NN outperformed the conventional NN. In addition, we put to use CBR that is widely used recently as a problem-solving and learning tool both in academic and business areas. With an advantage of the easiness in model design compared to a NN model, the CBR model proves itself to have good classification capability through the highest hit ratio in the corporate credit rating.

  • PDF

Development of AHP Model for Corporate Credit Rating Systems (기업신용평가시스템을 위한 AHP 모형의 개발)

  • 정현순;한인구;김경재
    • Korean Management Science Review
    • /
    • v.20 no.2
    • /
    • pp.165-177
    • /
    • 2003
  • This paper presents the prototype of corporate credit rating system using analytic hierarchy process (AHP). Prior studios have proposed various models of credit rating system, but most studies considered only financial information. Financial information, however, is only a small part of corporate information. In this study, the proposed credit rating system integrates both financial and non-financial information. Fifteen corporations are tested for the usefulness of the proposed system.

Integration rough set theory and case-base reasoning for the corporate credit evaluation (러프집합이론과 사례기반추론을 결합한 기업신용평가 모형)

  • Roh, Tae-Hyup;Yoo Myung-Hwan;Han In-Goo
    • The Journal of Information Systems
    • /
    • v.14 no.1
    • /
    • pp.41-65
    • /
    • 2005
  • The credit ration is a significant area of financial management which is of major interest to practitioners, financial and credit analysts. The components of credit rating are identified decision models are developed to assess credit rating an the corresponding creditworthiness of firms an accurately ad possble. Although many early studies demonstrate a priori which of these techniques will be most effective to solve a specific classification problem. Recently, a number of studies have demonstrate that a hybrid model integration artificial intelligence approaches with other feature selection algorthms can be alternative methodologies for business classification problems. In this article, we propose a hybrid approach using rough set theory as an alternative methodology to select appropriate attributes for case-based reasoning. This model uses rough specific interest lies in lthe stable combining of both rough set theory to extract knowledge that can guide dffective retrevals of useful cases. Our specific interest lies in the stable combining of both rough set theory and case-based reasoning in the problem of corporate credit rating. In addition, we summarize backgrounds of applying integrated model in the field of corporate credit rating with a brief description of various credit rating methodologies.

  • PDF

Development of Intelligent Credit Rating System using Support Vector Machines (Support Vector Machine을 이용한 지능형 신용평가시스템 개발)

  • Kim Kyoung-jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1569-1574
    • /
    • 2005
  • In this paper, I propose an intelligent credit rating system using a bankruptcy prediction model based on support vector machines (SVMs). SVMs are promising methods because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. This study examines the feasibility of applying SVM in Predicting corporate bankruptcies by comparing it with other data mining techniques. In addition. this study presents architecture and prototype of intelligeht credit rating systems based on SVM models.

DEFAULTABLE BOND PRICING USING REGIME SWITCHING INTENSITY MODEL

  • Goutte, Stephane;Ngoupeyou, Armand
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.711-732
    • /
    • 2013
  • In this paper, we are interested in finding explicit numerical formulas to evaluate defaultable bonds prices of firms. For this purpose, we use a default intensity whose values depend on the credit rating of these firms. Each credit rating corresponds to a state of the default intensity. Then, this regime switches as soon as one of the credit rating of a firm also changes. Moreover, this regime switching default intensity model allows us to capture well some market features or economics behaviors. Thus, we obtain two explicit different formulas to evaluate the conditional Laplace transform of a regime switching Cox Ingersoll Ross model. One using the property of semi-affine of the model and the other one using analytic approximation. We conclude by giving some numerical illustrations of these formulas and real data estimation results.

Restoring the Role of Credit Rating Agencies as Gatekeepers (신용평가기능 개선을 위한 과제)

  • CHO, Sungbin
    • KDI Journal of Economic Policy
    • /
    • v.33 no.2
    • /
    • pp.81-110
    • /
    • 2011
  • Credit rating agencies(CRAs) are accused of failing to provide accurate and fair credit ratings and hence being responsible for the crisis. This paper tries to add on to the literature on credit rating reform through examining the CRAs in a model where rating quality is unobservable. We show that unobservability of rating effort results in the sub-optimal level of quality. Then the paper extends the model to incorporate ancillary services, competition and reputation. We show that ancillary services worsen the conflict of interests of the CRAs and that competition and reputation may not be strong enough to discipline the CRAs. Hence regulatory oversight and imposition of liability may be necessary in order to increase the accuracy of ratings.

  • PDF

Probability of default validation in a corporate credit rating model (국내모회사와 해외자회사 신용평가모형의 적합성 검증 연구)

  • Lee, Woosik;Kim, Dong-Yung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.605-615
    • /
    • 2017
  • Recently, financial supervisory authority of Korea and international credit rating agencies have been concerned about a stand-alone rating that is calculated without incorporating guaranteed support of parent companies. Guaranteed by parent companies, most foreign subsidiaries keeps good credit rate in spite of weak financial status. However, what if the parent companies stop supporting the foreign subsidiaries, they could have a probability to go bankrupt. In this paper, we have validated a credit rating model through statistical measurers such as performance, calibration, and stability for Korean companies owning foreign subsidiaries.