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DEFAULTABLE BOND PRICING USING REGIME

SWITCHING INTENSITY MODEL

STÉPHANE GOUTTE∗† AND ARMAND NGOUPEYOU±

Abstract. In this paper, we are interested in finding explicit numerical
formulas to evaluate defaultable bonds prices of firms. For this purpose,
we use a default intensity whose values depend on the credit rating of these

firms. Each credit rating corresponds to a state of the default intensity.
Then, this regime switches as soon as one of the credit rating of a firm also
changes. Moreover, this regime switching default intensity model allows
us to capture well some market features or economics behaviors. Thus, we

obtain two explicit different formulas to evaluate the conditional Laplace
transform of a regime switching Cox Ingersoll Ross model. One using
the property of semi-affine of the model and the other one using analytic

approximation. We conclude by giving some numerical illustrations of these
formulas and real data estimation results.
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1. Introduction

In an economic crisis situation where the credit ratings of countries or firms
have a big impact in the general financial market, we need to understand and
capture the change of these ratings in the dynamic of firms bond price. Moreover,
we also have to model the contagion risk due to a bad rating of a firm with
respect to another one. For example, the Bond of countries in the Euro zone
are affected by the bad credit rating of Greece. In the literature, models for
pricing defaultable securities have been introduced by Merton [23]. It consists
of explicitly linking the risk of default and the value of the firms. Although
this model is a good issue to understand the default risk, it is less useful in
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practical applications since it is too difficult to capture all the macroeconomics
factors which appear in the dynamics of the value of the firms. Hence, Duffie
and Singleton [9] introduced the reduced form modeling, followed by Madan
and Unal [22], Jeanblanc and Rutkowski [20] and others. The main tool of this
approach is the ”default intensity process” which describes in short terms the
instantaneous probability of default. Moreover to deal with contagion risk, the
most popular approach is copula. The credit rating of each firm is modeled
by a Markov chain on which we will construct our copula. In this regard, we
use a continuous time Markov chain called credit migration process studied by
Bielecki and Rutkowski in [4]. Hence, our copula, which depends on the credit
ratings, will affect the dynamic of the default intensity. In fact, we define default
intensity process by a Cox-Ingersoll-Ross (CIR) model whose parameters values
depend on this copula.

The Cox-Ingersoll-Ross model was first considered to model the term struc-
ture of interest rate by Cox and al. in [7]. The study of this class of processes
was caution by the fact that it allows us a closed form expression of Laplace
transform (see Duffie and al. [8]) and models well the default intensity (Alfonsi
and Brigo [1]). Moreover, Choi in [5] shown that regime switching CIR process
captures more short term interest rate than standard models. In a econometric
point of view, regime switching model were introduced by Hamilton in [16].

In this framework, we obtain explicit formulas to evaluate defaultable bond
prices. More precisely, we obtain two different formulas to evaluate the Laplace
transform of defaultable intensity. Firstly, we use the semi-affine property of
the regime switching CIR model and then solve a system of Riccati’s equations.
Secondly, we extend the analytic approximation found in Choi and Wirjanto
[6]. Indeed, the authors in [6] give an analytic approximation of the value of
bond price with constant CIR parameters and with constant time step grid
discretization of the model. We extend this result in three ways: firstly to
evaluate conditional Laplace transform of a regime switching Cox Ingersoll Ross,
secondly to evaluate defaultable regime switching bond price and thirdly in the
case of non uniform deterministic time step model discretization (in our case,
the time step model discretization depends on the regime switching stopping
time). Then, we will apply these two formulas to price defaultable bond. We
will illustrate the efficiency of our new modelization of regime switching intensity
firstly by comparing the computing time of each formulas, secondly by showing
(using real historical data based on the Greece spread CDS) that our model
estimates well data and that each regime captures well some market features or
economics behaviors.

The paper is structured as follow, in Section 2, we introduce the Markov
copula, the credit migration process and the regime switching Cox-Ingersoll-Ross
model. In Section 3, we give the two formulas to evaluate the conditional Laplace
transform in this framework. Finally, in Section 4, we show some simulations to
compare results given by each formulas and to illustrate the model and then we
give some estimations on real data.
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2. The defaultable model

2.1. Credit migration model. Let T > 0 be a fixed maturity time and denote
by (Ω,F := (F t)[0,T ],P) an underlying probability space.

Definition 2.1. A notation is a label given by an entity which measures the
viability of a firm. This graduate notation goes from 1 to K. 1 for the best
economic or financial situation and K for the worst. We will call an indicator
of notation a continuous time homogeneous Markov chain on the finite space
S = {1, . . . ,K}.

Let A and B be two firms with their own indicator of notation (XA)t∈[0,T ] and

(XB)t∈[0,T ]. Hence XA and XB are two Markov chains with generator matrix

ΠA and ΠB. We recall that the generator matrix of C ∈ {A,B} is given by
ΠC

ij ≥ 0 if i ̸= j for all i, j ∈ S and ΠC
ii = −

∑
j ̸=i Πij otherwise. We can remark

that ΠC
ij represents the intensity of the jump from state i to state j. Moreover,

we denote by FA
t := {σ(XA

s ); 0 ≤ s ≤ t} and FB
t := {σ(XB

s ); 0 ≤ s ≤ t} the
natural filtrations generated by XA and XB.

2.1.1. Markov Copula. Let denote byX the bivariate processX = (XA, XB),
which is a finite continuous time Markov chain with respect to its natural fil-
tration FX = FA,B . We recall now the Corollary 5.1 of Bielecki and al. [2],
applied to our case, which gives the condition that the components of the bivari-
ate processes X are themselves Markov chain with respect to their own natural
filtration.

Corollary 2.2. Consider two Markov chains XA and XB, with respect to their
own filtrations FA and FB, and with values in S. Suppose that their respective
generators are ΠA

ij and ΠB
hk with i, j, h and k are in S. Consider the system of

equations in the unknown ΠX
ij,hk where i, j, h, k ∈ S and (i, h) ̸= (j, k):∑

k∈S

ΠX
ij,hk = ΠA

ij , ∀h, i, j ∈ S, i ̸= j,∑
j∈S

ΠX
ij,hk = ΠB

hk, ∀i, h, k ∈ S, h ̸= k.
(1)

Suppose that the above system admits a solution such that the matrix ΠZ :=(
ΠZ

ij,hk

)
i,j,h,k∈S

with

ΠX
ii,hh = −

∑
(j,k)∈S×S,(j,k)̸=(i,h)

ΠX
ij,hk (2)

properly defines an infinitesimal generator of a Markov chain with values in
S × S. Consider, the bivariate Markov chain X = (XA, XB) on S × S with
generator matrix ΠX . Then, the components XA and XB are Markov chains
with respect to their own filtrations, their generators are ΠA and ΠB.
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Definition 2.3. A Markov copula between the Markov chains XA and XB is
any solution to system (1) such that the matrix ΠX , with ΠX

ii,hh given in (2),
properly defines an infinitesimal generator of a Markov chain with values in
S × S.

We get also that the infinitesimal generator process of X can be written as

ΠX =


π(1,1) . . . π(1,K)

π(2,1 . . . π(2,K)

...
...

π(K,1) . . . π(K,K)


Then the possible states are N := K2 couples which are given by

E := {(1, 1), (1, 2), . . . , (1,K), (2, 1), . . . , (2,K), . . . (K, 1), . . . , (K,K)} .

2.1.2. Markov copula in the hazard rate framework. We denote by
F := (Ft)t∈[0,T ] the filtration such that Ft = F t ∨ FX

t . Let τA and τB be the

two default times of firms A and B. Let define for all t ∈ [0, T ], HA
t = 1{τA≤t}

and HB
t = 1{τB≤t}. We define now some others filtrations

GA
t = Ft ∨HB

t , , GB
t = Ft ∨HA

t and Gt = Ft ∨HA
t ∨HB

t ,

where HA (resp. HB) is the natural filtration generated by HA (resp. HB)
and we will denote G := (Gt)t∈[0,T ], GA :=

(
GA
t

)
t∈[0,T ]

and GB :=
(
GB
t

)
t∈[0,T ]

.

Let now consider λi := λi(X), for i ∈ {A,B} two F-progressively non-negative
processes defined on (Ω,G,P) endowed with the filtration F. We assume that∫∞
0

λi(Xs)ds = +∞ and we set:

τ i = inf

{
t ∈ R+,

∫ t

0

λi(Xs)ds ≥ − ln(U i)

}
, i ∈ {A,B}.

where U i are mutually independent uniform random variables defined on (Ω,G,P)
which are independent of λi. The stopping times τA and τB are totally inac-
cessible and conditionally independent given the filtration F, moreover the (H)-
hypothesis is satisfied (i.e. that every local F-martingale is a local G-martingale
too). The process λi is called the F-intensity of the firm i and we have that

M i
t = Hi

t −
∫ t∧τ i

0
λi(Xs)ds are G-martingales. In general case, processes λi are

F ∨ G(i)-adapted which jump when any default occurs. This jump impacts the
default of the firm and makes some correlation between the firms. In our case,
the correlation is constructed using the F-Markov chain X = (XA, XB). Since
from the explicit formula of the intensity given the survey probability for each
i ∈ {A,B}:

λi
t = − 1

P(τ i ≥ t|Gi
t)

dP(τ i ≥ θ|Gi
t)

dθ

∣∣∣
θ=t

,
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we can find, from Bielecki and al. [3] (Example 4.5.1 p 94), that the formula of
the conditional survey probability is given by:

P(τ i ≥ θ|Gt) = 1{τ i≥t}E
[
e−
∫ θ
t
λi(Xs)ds|Ft

]
, (3)

for i ∈ {A,B}. The Markov chain X will explain how the curve of the default
bond moves with different states (regimes) of the financial market.

2.1.3. Construction of the Markov chain. We are now going to present
the canonical construction of a conditional Markov chain X, based on a given
filtration F and a stochastic infinitesimal generator ΠX . This construction can be
found in Bielecki and Rukowski [4] or Eberlein and Ozkan [10], which we follow
closely in the exposition. Each component ΠX

ij : Ω×[0, T ] → R+ are bounded, F-
progressively measurable stochastic processes. The process X is constructed from
an initial distribution µ and the F-conditional adapted infinitesimal generator
ΠX by enlarging the underlying probability space (Ω,F ,PT ) to a probability
space denoted in the sequel by (Ω,F ,QT ). The new probability space is obtained
as a product space of the underlying one with a probability space supporting
the initial distribution µ of X and a probability space supporting a sequence of
uniformly distributed random variables, which control, together with the entries
of the infinitesimal generator ΠX , the laws of jump times (τk)k∈N of X and
jump heights. Thus, we denote by F its trivial extension from the original
probability space (Ω,F ,PT ) to (Ω,F ,QT ). However an important step of this
construction is that they construct a discrete time process (Xk)k∈N which allows
us to construct the credit migration process X as Xt := Xk−1 , for all t ∈
[τk−1, τk[, k ≥ 1, where τk are the jump times. Moreover, an important result
is that the progressive enlargement of filtration Ft := F t∨FX

t , t ∈ [0, T ] satisfies
the (H)-hypothesis. In the sequel, we will work under the enlarging probability
space (Ω,F ,QT ). The expectations will be taken under the probability measure
QT but for simplicity of notation, we will write E for EQT .

2.2. Pricing defaultable bond with Markov copula.

2.2.1. Defaultable Model. Let W be a standard real Brownian motion with
filtration Ft = σ{Ws; 0 ≤ s ≤ t}. We recall that a Cox Ingersoll Ross (CIR)
process is the solution of the stochastic differential equation given by dλt =
κ(θ−λt)dt+σ

√
λtdWt, t ∈ [0, T ], where κ, θ and σ are constants which satisfy

the condition σ > 0 and κθ > 0. We will assume that λ0 ∈ R+ and that
2κθ ≥ σ2. This is to ensure that the process (λt) is positive. We will now define
the notion of regime switching CIR.

Definition 2.4. Let (X)t be a two-dimensional continuous time Markov chain
on finite space S2 := {1, . . . ,K}2. We will call a Regime switching CIR the
process (λt) which is the solution of the stochastic differential equation given by

dλt = κ(Xt)(θ(Xt)− λt)dt+ σ(Xt)
√
λtdWt, t ∈ [0, T ]. (4)

For all j ∈ {1, . . . ,K}2, we have that κ(j)θ(j) > 0 and 2κ(j)θ(j) ≥ σ(j)2.



716 Stéphane Goutte and Armand Ngoupeyou

For simplicity, we will denote the values κ(Xt), θ(Xt) and σ(Xt) by κt, θt
and σt.

Assumption 1. We assume that both intensities processes λA and λB defined
in Section 2.1.2 follow a regime switching CIR given for i = {A,B} by

dλi
t = κ(Xt)(θ(Xt)− λi

t)dt+ σ(Xt)
√

λi
tdWt, for all t ∈ [0, T ].

Remark 2.1. We have that the intensity process (λi
t) depends on the value of

the credit migration process X = (XA, XB). Hence each firm A and B has an
increasing sequence of FX -stopping times given by:

• for the firm A it is 0 ≤ τA1 < τA2 < · · · < τAn ≤ T .
• for the firm B it is 0 ≤ τB1 < τB2 < · · · < τBm ≤ T .

Hence with these two sequences, we can construct another sequence by a re-
arrangement of these two sequences in one. Indeed, we can put every stopping
time τAi , i ∈ {1, . . . n} and τBj , j ∈ {1, . . . ,m} in an increasing order. We
obtain a new increasing sequence of stopping times of size M ∈ N given by
0 ≤ τ1 < τ2 < · · · < τM ≤ T . As an example of this construction:

-

0

τA1

τ1

τA2

τ2

τB1

τ3

τA3

τ4

τB2

τ5

τA4

τ6 T

Remark 2.2. With this construction, we have that on each time interval t ∈
[τk, τk+1[ that the regime switching CIR process λi defined in Assumption 1 is
a classical CIR with constant parameters.

2.2.2. Zero coupon bond price. We can now define the defaultable Zero
coupon bond price.

Definition 2.5. We will denote by
(
Di

t,T

)
t∈[0,T ]

, i = {A,B} the price of a

defaultable discounted bond price which pays $1 at the maturity T.

Using the partitioning time, the notation defined in the previous subsection
and the general asset pricing theory in Harrison and Pliska [17] and [18], the
conditional defaultable discounted bond price Dt,T is given by

Proposition 2.6. For i = {A,B}, we have for all t ∈ [0, T ] that

Di
t,T = (1−Hi

t)E

[
exp

(
−
∫ T

t

(rs + λi
s)ds

)
|FX

T , λt

]
. (5)

Remark 2.3. (1) The quantity
(
rt + λi

t

)
t∈[0,T ]

can be seen as a default-adjusted

interest rate process. The part
(
λi
t

)
t∈[0,T ]

is the risk-neutral mean loss rate

of the instrument due to the default of the firm i ∈ {A,B}. The quantity(
rt + λi

t

)
t∈[0,T ]

therefore represents the probability and the timing of default, as

well as for the effect of losses on default. This model allows us to capture an
economic health of each firm since for each firm i ∈ {A,B}, the stochastic process
(λi

t) has parameters whose values depend on the credit notation of the firms. And
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by the construction of the migration process X, we have also correlation between
each firm notation. This allows the model to capture financial health correlation
between each firm, like the impact of the default of one firm against the others.
(2) In the sequel we will assume that we know the full history of the Markov
chain X.

Our aim is so to obtain explicit formulas of (5) when the intensities processes
depend on a Markov copula. This is done by the following Theorem using two
different methods to evaluate the conditional Laplace transform of λi. The first
one uses a Ricatti approach and the second one an analytical approximation.

Theorem 2.7. Under Assumptions 1 and assuming that X is independent of
W and that the risk-free interest rate r is a deterministic function, we have for
i ∈ {A,B} that the defaultable bond price can be obtained by two formulas:

(1) Riccati Approach:

Di
0,T = E

[
exp

(
−
∫ T

0

rsds

)
exp

{
−

M∑
j=1

BM−j(∆tj−1)

}
exp (−A0(∆t0 , i0)λ)

]
(6)

where

A0(∆t0) =
2

γ1 + κ1
− 4γ1

γ1 + κ1

1

(γ1 + κ1) exp(γ1∆t0) + γ1 − κ1
, (7)

BM−j(∆tj−1
) = −

κM−j+1θM−j+1(γM−j+1 + κM−j+1)

(σM−j+1)2
∆tj−1

+ 2
κM−j+1θM−j+1

(σM−j+1)2

[
− ln

(
2γ

M−j+1
)

+ ln
(
(γ

M−j+1
+ κ

M−j+1
) exp(γ

M−j+1
∆tj−1

) + γ
M−j+1 − κ

M−j+1
)]

,

(8)

and

γM−j+1 =
√
(κM−j+1)2 + 2(σM−j+1)2, (9)

where we denote for simplicity κj = κ(Xtj ), θj = θ(Xtj ) and σj =
σ(Xtj )

(2) Analytic Approximation:

Di
0,T = E

[
exp

(
−
∫ T

0

rsds

)
exp

{
n∑

k=1

−u

2
C1(k) + ln

(
Et0

λ0,X

[
C2(k)

])}]
, (10)

where the sequence a is given by an−1 = 1+ hn

hn−1
+ hn

hn−1
an (1− hnκn−1) ,

an = 1 and C1, C2 are given by

C1(k) :=h2
n−k+1an−k+1κn−kθn−k − u

2
h1λ0 [1 + a1 (1− κ0h1)] ,

C2(k) := exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1

[
λ0 +

n−k∑
i=0

κi(θi − λi)hi+1 +

n−k∑
i=0

σi

√
λi∆Wi

])
.
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Remark 2.4. The hypothesis that X is independent of W has an economic
sense since for example X = (XA, XB) could represent the credit notation of
two countries given by an exogenous entity like a credit rating agencies.

Proof. The proof will be given in the sequel following the Section 3. �

3. Conditional Laplace transform formulas

We are now going to prove the Theorem 2.7. More precisely, we will find two
explicit formulas to evaluate the conditional Laplace transform of λ with respect
to X denoted by Φ. It is given, for all u ∈ C, by

Φ0,T,λ,X(u) = E
[
exp

(
−u

∫ T

0
λsds

)
|λ0 = λ,FX

T

]
= Eλ,X

[
exp

(
−u

∫ T

0
λsds

)]
. (11)

Hence, our defaultable bond price formulas will be obtained as a particular case
of this equation by taking u = 1.

3.1. A Ricatti approach. By Remark 2.1, there exists an increasing sequence
of FX -stopping times in interval [0, T ], where the value of the Markov chain
changes. We denote by Γ this subdivision 0 = τ0 < τ1 < · · · < τM = T . So in
each time interval [τk, τk+1[, k ∈ {1, . . . n}, X is constant and so the CIR regime
switching process λ has constant parameters.

Proposition 3.1. The conditional Laplace transform of the regime switching
CIR process (for u = 1) between time [τk, τk+1[ with λτk = λ and Xτk+1

= j ∈ Sd

is given by

Φτk,τk+1,j :=E
[
exp

(
−
∫ τk+1

τk

λsds

)
|λτk = λ,Xτk+1

= j

]
,

=exp {−A(∆tk , j)λ−B(∆tk , j)} ,
(12)

where ∆tk = τk+1 − τk and

A(∆tk , j) =
2

γj + κj
− 4γj

γj + κj

1

(γj + κj) exp(γj∆tk) + γj − κj
, (13)

B(∆tk , j) =− κjθj(γj + κj)

σ2
j

∆tk + 2
κjθj
σ2
j

ln ((γj + κj) exp(γj∆tk ) + γj − κj)

− 2
κjθj
σ2
j

ln (2γj) ,

(14)

γj =
√
κ2
j + 2σ2

j . (15)

Proof. We recall that the constant parameter CIR process is an affine process
(see Duffie and al. [8]). So as in each step of time [τk, τk+1[, the stochas-
tic process X is constant. So the process λ is a classical CIR with constant
parameters on each step. So on each time interval [τk, τk+1[, the process λ is
affine, hence we can assume that the expression of Φτk,τk+1,j is given by the form
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exp {−A(∆tk , j)λτk −B(∆tk , j)} for some functions A(∆tk , j) and B(∆tk , j) so-
lution of a system of Riccati equation. Then the expected result is well known
and can be found for instance in Cox and al. [7]. �

We would like now to give an explicit form of the conditional Laplace trans-
form of the CIR process between time 0 and T. This is done by the following
Theorem.

Theorem 3.2. Assume that the intensity process (λt) follows a regime switching
CIR, then we have for all λ0 = λ > 0 and Xτ1 = i0 ∈ Sd that

Φ0,T,λ,X(1)=E

[
exp

(
−
∫ T

0

λsds

)
|λ0 = λ,FX

T

]
:= Eλ,X

[
exp

(
−
∫ T

0

λsds

)]
,

=exp

−
M∑
j=1

BM−j(∆tj−1)

 exp (−A0(∆t0 , i0)λ) .

where A0(∆t0), BM−j(∆tj−1) and γM−j+1 are defined in Theorem 2.7 (see (7),
(8) and (9)).

Proof. We have a sequence of increasing times 0 = τ0 < τ1 < · · · < τM = T
where the Markov chain X changes its value. Hence

Eλ,X

[
exp

(
−
∫ T

0

λsds

)]
= Eλ,X

[
M−1∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)]
.

By hypothesis, X is independent of W , then conditioning with respect to FτM−1

:= FM−1, we obtain

Eλ,X

[
exp

(
−
∫ T

0

λsds

)]
= Eλ,X

[
E

[
M−1∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
|FM−1

]]
,

=Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
E

[
exp

(
−
∫ τM

τM−1

λsds

)
|FM−1

]]
.

(16)

Moreover, we know that E
[
exp

(
−
∫ τM
τM−1

λsds
)
|FM−1

]
is equal to

Φ(τM−1, τM , XM ), where XM means XτM . So applying Proposition 3.1, we get

E

[
exp

(
−
∫ τM

τM−1

λsds

)
|FM−1

]
=exp

{
−AM−1(∆tM−1 , XM )λτM−1

−BM−1(∆tM−1
, XM )

}
.

We recall that the quantities AM−1(∆tM−1
, XM ) and BM−1(∆tM−1

, XM ) are
constants. To simplify the notation of the calculus we will denote by Ak−1

(resp. Bk−1) the quantity Ak−1(∆tk−1
, Xk) (resp. Bk−1(∆tk−1

, Xk)). Hence
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replacing this result in the expectation (16) gives

Eλ,X

[
exp

(
−
∫ T

0

λsds

)]
= Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
exp

{
−AM−1λτM−1

− BM−1

}]
,

= exp {−BM−1}Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds − AM−1λτM−1

)]
.

We condition again the next quantity with respect to FM−2 to obtain

Eλ,X

[
exp

(
−
∫ T

0

λsds

)]
= exp {−BM−1}Eλ,X

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)

E

[
exp

(
−
∫ τM−1

τM−2

λsds−AM−1λτM−1

)
|FM−2

]]
.

To continue, we need to evaluate the conditional expectation:

φτM−2,∆tM−2
:= E

[
exp

(
−
∫ τM−1

τM−2

λsds−AM−1λτM−1

)
|FM−2

]
.

Lemma 3.3. Assume for all k ∈ {1, . . . ,M} that the conditional expectation
φτM−k,∆tM−k

has an exponential affine structure form given by

φτM−k,∆tM−k
= exp

(
−AM−k(∆tM−k , XM−k+1)λτM−k −BM−k(∆tM−k , XM−k+1)

)
. (17)

Then we can find explicit forms for functions AM−k(∆tM−k
, XM−k+1) and

BM−k(∆tM−k
, XM−k+1) which are given explicitly by equations (13) and (14)

under the conditions that AM−k(0) = AM−k+1 and BM−k(0) = 0.

Proof. Let

φτM−k,∆tM−k
:= E

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+1

)
|FM−k

]
,

then

φτM−k,∆tM−k
= EM−k

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+∆tM−k

)]
,

since ∆tM−k
:= τM−k+1 − τM−k. Taking a small time interval dt ≪ ∆tM−2

to
obtain that the previous quantity is equal to

=EM−k

[
EM−k+dt

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+∆tM−k

)]]
.

Thus the inside expectation is then equal to:

EM−k

[
φ(τM−k + dt,∆tM−k

− dt) exp
(
−
∫ τM−k+dt

τM−k
λsds

)]
. We now use the hy-

pothesis on the form of φ and the simplified notationsAM−k(∆tM−k
−dt,XM−k+1)

= AM−k(∆tM−k
− dt) and BM−k(∆tM−k

− dt,XM−k+1) = BM−k(∆tM−k
− dt),

to get EM−k

[
exp

(
−
∫ τM−k+dt

τM−k
λsds

)
exp

(
−AM−k(∆tM−k

− dt)λτM−k+dt

)
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exp
(
−BM−k(∆tM−k

− dt)
)]
. Then, for small dt and using the stochastic differ-

ential equation of λ, we get that it is equal to

= EM−k

[
exp

{
−BM−k(∆tM−k

− dt)− λτM−k
dt−AM−k(∆tM−k

− dt)

×
[
λτM−k

+ κM−k+1
(
θM−k+1 − λτM−k

)
dt+ σM−k+1

√
λτM−k

dWt

]}]
where κM−k+1 = κ(XτM−k+1),θ

M−k+1 = θ(XτM−k+1) and σM−k+1 = δ(XτM−k+1).
Finally we obtain

= exp
(
−AM−k(∆tM−k − dt)λτM−k −AM−k(∆tM−k )κ

M−k+1
(
θM−k+1 − λτM−k

)
dt
)

× exp
(
−BM−k(∆tM−k − dt)− λτM−kdt

)
× exp

(
1

2
A2

M−k(∆tM−k )(σ
M−k+1)2λτM−kdt

)
.

By identifying with the assumed expression of φ in (17), we get
AM−k(∆tM−k

) =AM−k(∆tM−k
− dt)−AM−k(∆tM−k

)κM−k+1dt

− 1

2
A2

M−k(∆tM−k
)(σM−k+1)2dt+ dt.

BM−k(∆tM−k
) =BM−k(∆tM−k

− dt) +AM−k(∆tM−k
)κM−k+1θM−k+1dt.

Taking dt close to zero,
∂AM−k(∆tM−k )

∂∆tM−k

=−AM−k(∆tM−k)κ
M−k+1 − 1

2
A2

M−k(∆tM−k)(σ
M−k+1)2 + 1

∂BM−k(∆tM−k )

∂∆tM−k

=AM−k(∆tM−k )κ
M−k+1θM−k+1.

with conditions for ∆tM−k
≡ 0, AM−k(0) = AM−k+1 and BM−k(0) = 0.

Hence by Proposition 3.1, we know the explicit forms of AM−k(∆tM−k
) and

BM−k(∆tM−k
) which are given by equations (13), (14) with the recursive condi-

tion that AM−k(0) = AM−k+1 and initial condition BM−k(0) = 0. �

We continue the proof of the Theorem 3.2, by applying the Lemma 3.3 with
k = 2, we obtain

E

[
exp

(
−
∫ τM−1

τM−2

λsds−AM−1λτM−1

)
|FM−2

]
=exp

(
−AM−2(∆tM−2

)λτM−2
−BM−2(∆tM−2

)
)
,

with deterministic function AM−2(∆tM−2
) and BM−2(∆tM−2

). Hence, we get

Eλ,X

[
exp

(
−
∫ T

0

rsds

)]
=exp {−BM−1}×

Eλ,X

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
exp

(
−AM−2(∆tM−2)λtM−2 −BM−2(∆tM−2)

)]

= exp {−BM−1 −BM−2}Eλ,X

[∏M−3
k=0 exp

(
−
∫ τk+1

τk
λsds−AM−2(∆tM−2)λτM−2

)]
.
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By iterating the conditioning with respect to FM−k, k going to 3 to M and
applying the Lemma 3.3 we finally obtain

Eλ,X

[
exp

(
−
∫ T

0

λsds

)]
= exp

−
M∑
j=1

BM−j

 exp (−A0(∆t0)λτ0) ,

with by hypothesis λτ0 = λ and A0(∆t0) = A0(∆t0 , Xτ1) with Xτ1 = i0 ∈
Sd. �

We can obtain the general expression of the conditional Laplace transform of
the regime switching CIR process using Theorem 3.2.

Corollary 3.4. For all u ∈ C, we have that the conditional Laplace transform
of the regime switching CIR process with λ0 = λ and Xτ1 = i0 ∈ Sd is given by

Φ0,T,λ,X(u) = exp

−
M∑
j=1

B̃M−j

(
∆tM−j

) exp
(
−Ã0 (∆t0 , i0)λ

)
, (18)

where the functions B̃M−j for j = {1, . . . ,M} and Ã0 are given by equations

(7) and (8) taking parameters κ̃j := ˜κ(Xτj ) = κj, θ̃j := ˜θ(Xτj ) = uθj and

σ̃j := ˜σ(Xτj ) =
√
uσj.

Proof. Since E
[
exp

(
−u
∫ T

0
λsds

)
|λ0 = λ,FX

T

]
= Eλ,X

[
exp

(
−
∫ T

0
(uλs)ds

)]
.

This is the conditional Laplace transform of a process (uλ)t which is still a

CIR process with new parameters κ̃t = κt, θ̃t = uθt and σ̃t =
√
uσt, for all

t ∈ [0, T ]. Hence applying Theorem 3.2 with this set of parameters gives the
expected result. �

3.2. Analytic approximation. We give now a second way to evaluate the
defaultable bond. In fact, we give now an analytical approximation to evaluate
the conditional Laplace transform of a regime switching CIR.

3.2.1. Construction of the new times grid. Let ∆t be a fixed time step,
then starting in time 0 we partition the time interval [0, T ] in time steps of

• size ∆t if there is no jump of the Markov process between time 0 to ∆t.
• size τ1 if there is the first jump of the Markov process at stopping time
τ1 less than ∆t.

Hence we denote by h1 the first time step of size ∆t or τ1. Then we will proceed
as the following: at time tk, corresponding of the time after the step hk, we
construct the step hk+1 of size

• ∆t if there is no jump of the Markov process between time tk to tk+∆t.
• τi if there is the i jumps of the Markov process at stopping time τi less
than tk +∆t.



Defaultable bond pricing using regime switching intensity model 723

As an example of this construction

-

∆t 2∆t 3∆t 4∆t

0

τ1 τ2 τ3

Tt1-�
h1

t2-�
h2

t3-�
h3

t4-�
h4

t5-�
h5

t6-�
h6

t7-�
h7

-�
h8

This construction implies that hk = tk − tk−1 ≤ ∆t and that the parameters
of the regime switching CIR are constants (and bounded) in these each time
intervals [tk, tk+1[, k ∈ {0, 1, . . . , n− 1}. It follows as an application of the tree
property of conditional expectation that the conditional Laplace transform of λ
is given by

Φ0,T,λ,X(u) = Et0
λ0,X

Et1
λ,X . . .Etn−1

λ,X

[
exp

(
−u

∫ T

0

λsds

)]
. (19)

Proposition 3.5. Let for all k ∈ {1, . . . , n− 1},

Fk = exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1λn−k

)
. (20)

Then, we have

Et0
λ0,X

 exp
(
−u
∫ T
0

λsds
)

∏n−1
i=1 Fi

 = exp

(
−

u

2

n∑
k=1

h
2
kakκk−1θk−1 −

u

2
h1λ0 [1 + a1 (1 − κ0h1)]

)
Fn, (21)

where an−1 = 1 + hn

hn−1
+ hn

hn−1
an (1− hnκn−1) and an = 1.

Proof. Using trapezoidal rule, we obtain that the expectation at time tn−1 is
given by

Etn−1

λ0,X

[
exp

(
−u

∫ T

0

λsds

)]
= Etn−1

λ0,X

[
exp

(
−u

n∑
i=1

(
λi + λi−1

2
hi

))]
,

= exp

(
−u

n−2∑
i=1

(
λi + λi−1

2
hi

)
− u

λn−2

2
hn−1

)
× Etn−1

λ,X

[
exp

(
−u

2
[hnλn + hnλn−1 + hn−1λn−1]

)]
.

Using the approximation

λn ≃ λn−1 + κn−1 (θn−1 − λn−1)hn + σn−1

√
λn−1∆Wn−1,

where ∆Wn−1 = Wn −Wn−1 and denote by Gn−2 the quantity

exp

(
−u

n−2∑
i=1

(
λi + λi−1

2
hi

)
− u

λn−2

2
hn−1

)
.
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We obtain that Etn−1

λ0,X

[
exp

(
−u
∫ T

0
λsds

)]
is equal to

Gn−2E
tn−1

λ0,X

[
exp

(
−
u

2

[
hn

(
λn−1 + κn−1 (θn−1 − λn−1)hn + σn−1

√
λn−1∆Wn−1

)
+hnλn−1 + hn−1λn−1])] ,

= Gn−2 exp
(
−
u

2

[
hnλn−1 + h2

nκn−1θn−1 − h2
nκn−1λn−1 + hnλn−1 + hn−1λn−1

])
× Etn−1

λ0,X

[
exp

(
−
u

2
hnσn−1

√
λn−1∆Wn−1

)]
.

Moreover we have that ϵ ∼ N (0, 1) then for a constant K we know that

E
[
exp

(
K
√
Tϵ
)]

= exp

(
K2T

2

)
.

Thus factorize by −uλn−1hn−1

2 , we obtain that Etn−1

λ0,X

[
exp

(
−u
∫ T

0
λsds

)]
is equal

to

Gn−2 exp

(
u2

8
h3
nσ

2
n−1λn−1a

2
n

)
×

exp

(
−uλn−1hn−1

2

[
1 +

hn

hn−1
+

hn

hn−1
an (1− hnκn−1)

]
− u

2
h2
nanκn−1θn−1

)
=Gn−2 exp

(
−u

2
h2
nanκn−1θn−1

)
exp

(
−uλn−1hn−1

2
an−1

)
F1.

Hence

Etn−1

λ0,X

exp
(
−u
∫ T

0
λsds

)
F1

=Gn−2 exp

(
u2

8
h3
nσ

2
n−1λn−1

)
exp

(
−uλn−1hn−1

2
an−1

)
.

Then denoting Gn−3 = exp
(
−u
∑n−3

i=1

(
λi+λi−1

2 hi

)
− uλn−3

2 hn−2

)
, we get the

conditional expectation based on the information until tn−2

Etn−2

λ0,X

Etn−1

λ,X

exp
(
−u
∫ T

0
λsds

)
F1

 = Gn−3 exp
(
−u

2
h2
na

2
nκn−1θn−1

)

× Etn−2

λ0,X

[
exp

(
−u

2
[λn−1hn−1an−1 + hn−2λn−2 + hn−1λn−2]

)]
,

=Gn−3 exp
(
−u

2
h2
nanκn−1θn−1

)
exp

(
u2

8
h3
n−1σ

2
n−2λn−2a

2
n−1

)
exp

(
−u

2
λn−2hn−1an−1 −

u

2
κn−2 (θn−2 − λn−2)h

2
n−1an−1 − hn−2λn−2 − hn−1λn−2

)
,

=Gn−3 exp
(
−u

2
h2
nanκn−1θn−1

)
exp

(
u2

8
h3
n−1σ

2
n−2λn−2a

2
n−1

)
exp

(
−u

2
h2
n−1an−1κn−2θn−2

)
exp

(
−u

2
λn−2hn−1an−1

+
u

2
κn−2λn−2h

2
n−1an−1 − hn−2λn−2 − hn−1λn−2

)
,

=Gn−3 exp
(
−u

2
h2
nanκn−1θn−1 −

u

2
h2
n−1an−1κn−2θn−2

)
F2
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× exp

(
−u

2
λn−2hn−2

[
1 +

hn−1

hn−2
+

hn−1

hn−2
an−1 (1− κn−2hn−1)

])
,

=Gn−3 exp
(
−u

2
h2
nanκn−1θn−1 −

u

2
h2
n−1an−1κn−2θn−2

)
exp

(
−u

2
λn−2hn−2an−2

)
F2.

Hence by iterations, we obtain

Etn−k

λ0,X

exp
(
−u
∫ T

0
λsds

)
∏k−1

i=1 Fi

 = Gn−k−1 exp
(
−u

2
λn−khn−kan−k

)
Fk

× exp

(
−u

2

k∑
i=1

h2
n−k+ian−k+iκn−k+i−1θn−k+i−1

)
.

Then until time t0, we finally obtain the expected result. �
Theorem 3.6. For all u ∈ C, the conditional Laplace transform Φ of the regime
switching CIR process is given by

ln (Φ0,T,λ,X(u)) = ln

(
Et0

λ0,X

[
exp

(
−u

∫ T

0

λsds

)])
=− u

2

n∑
k=1

h2
kakκk−1θk−1 −

u

2
h1λ0 [1 + a1 (1− κ0h1)] +

n∑
k=1

ln
(
Et0

λ0,X

[
C2(k)

])
.

(22)

where the sequence a is defined in Proposition 3.5 and C2 is given by

C2(k) := exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1

[
λ0 +

n−k∑
i=0

κi(θi − λi)hi+1 +

n−k∑
i=0

σi

√
λi∆Wi

])
.

Proof. As in [6], we see that it would be difficult to compute the expression

Etn−k−1

λ0,X
[Fk] explicitly. That is why we simply approximate the expression Fk

at time tn−k by E0
λ0,X

[Fk]. Firstly, we can use the following approximation

λn−k ≃ λ0 +
∑n−k

i=0 κi(θi − λi)hi+1 +
∑n−k

i=0 σi

√
λi∆Wi. Then

Fk = exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1

[
λ0 +

n−k∑
i=0

κi(θi − λi)hi+1 +

n−k∑
i=0

σi

√
λi∆Wi

])
.

Approximate the expression of Fk at time tn−k by the expectation at time 0,
we obtain

ln

Et0
λ0,X

 exp
(
−u
∫ T
0 λsds

)
∏n−1

i=1 Fi

 ≃ ln

Et0
λ0,X

 exp
(
−u
∫ T
0 λsds

)
∏n

k=1 E
t0
λ0,X

[Fk]


= ln

Et0
λ0,X

[
exp

(
−u
∫ T
0 λsds

)]
∏n

k=1 E
t0
λ0,X

[Fk]


= ln

(
Et0
λ0,X

[
exp

(
−u

∫ T

0
λsds

)])
− ln

(
n∏

k=1

Et0
λ0,X

[Fk]

)

= ln
(
Φ0,T,λ,X(u)

)
−

n∑
k=1

ln
(
Et0
λ0,X

[Fk]
)
.

We conclude using the expression of Fk. �
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Remark 3.1. The analytic approximation formula given in previous Theorem
could be also used as a way to simulate conditional Laplace transform.

4. Simulations

4.1. Pricing zero coupon Bond in the two firms case with two regimes.
We fixe the time maturity T of the zero coupon bond equal to 10 (i.e. a ten
years ahead maturity). We take a deterministic risk free interest rate equals to
zero.

4.1.1. The model parameters and heuristic. The heuristic of the calculus
of the defaultable Bond price is then done by a Monte Carlo approach with
MC ∈ N steps:

1. We know the value of the infinitesimal generator ΠX of the credit migration
process X. This one is given or estimated using historical data (see Section
4.2).

2. We generate a sequence of increasing stopping times and the corresponding
trajectory of the Markov chain X.

3. (a) We apply the formula (6) to calculate the price of this defaultable Bond
price for the firm A or B.

(b) We apply the construction of the time grid studied in subsection 3.2.1.
Then, we apply the formula (10).

4. We come back to the step 2. until we have done MC times this method.
5. We evaluate the means of the MC values obtained in points 3 (a) and (b).

Hence, assume that we have two regimes which represent a ”normal” economic
regime (regime 0) and a ”crisis” regime (regime 1), then the credit migration
process X takes its values in {(0, 0); (1, 0); (0, 1); (1, 1)}. For our simulation, in
this part, we fix the transition matrix PX of the credit migration process X
equals to

PX =


0.90 0.04 0.04 0.02
0.05 0.85 0.01 0.09
0.05 0.01 0.85 0.09
0.05 0.01 0.01 0.93

 .

In other words, if we are in a state where only the firm A is on ”crisis” (i.e. state
(1,0)) the probability that the firm B goes into ”crisis” in the next time step but
the firm A goes back on ”normal” economic situation, is 0.01. Hence, we need
to have four different sets of CIR default intensity parameters to model all the
states of the economy. Let for i ∈ {A,B}, νi, ξi and ρi be real valued such that
the set of parameters are given by Table 1

Remark 4.1.

• For i ∈ {A,B}, the constant νi, ξi and ρi are choosen such that the CIR
condition holds, i.e. 2κXθX ≥ σ2

X .
• The state (0, 0) can be seen as a standard economic state where nor firm
A nor firm B are in crisis.
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Table 1. Parameters values of the CIR default intensity in the 2

regimes case.

Parameters κX θX σX

(0,0) 0.1 0.15 0.15
(1,0) 0.1 + νA 0.15 + ξA 0.15 + ρA

(0,1) 0.1 + νB 0.15 + ξB 0.15 + ρB

(1,1) 0.1 + νA + νB 0.15 + ξA + ξB 0.15 + ρA + ρB

4.1.2. Comparison of the different formulas to evaluate defaultable
bond price. Convergence: We know that the formula of the conditional survey
probability with respect to G is given by equation (3). We would like now
to compare the different formulas to price defaultable zero coupon bond (i.e.
formulas (3), (6) and (10)). In tables 2, 3 and 4, we resume the convergence
results in the case of a four states regime parameters defined as in Table 1.

Table 2. Values of the constant parameters defined in Table 1.

Parameters: νA νB ξA ξB ρA ρB

Values: 0.2 0 0 0.3 0 0.1

Table 3. Values of the Bond price standard formula in t = 0 in

each regime with a maturity T = 10 years.

Regimes: (0, 0) (1, 0) (0, 1) (1, 1)
Bond price values: 0.6086 0.3777 0.2740 0.0668

Table 4. Results for the formulas convergence in t = 0 with
initial regime the regime (0, 0) and maturity T = 10 years.

Bond Price Ricatti: 6 (std) C.T.(sec.) Analytic: 10 (Std) C.T. MC: 3 C.T.

MC = 100 0.5619 (0.1110) 1.94 0.5585 (0.1699) 15.98 0.6500 1.95

MC = 300 0.5692 (0.1015) 5.34 0.5587 (0.1602) 52.52 0.6233 6.61

MC = 400 0.5736 (0.0949) 6.87 0.5649 (0.1505) 60.48 0.6400 9.58

MC = 500 0.5748 (0.0927) 7.97 0.5658 (0.1511) 78.32 0.6360 12.44

MC = 1000 0.5738 (0.0961) 16.31 0.5654 (0.1533) 146.51 0.6220 33.23

MC = 2000 0.5727 (0.0995) 27.33 0.5646 (0.1533) 221.22 0.5770 96.78

Remark 4.2. We take for the time step parameter ∆t (appearing in subsection 3.2.1 for

the calculus of (10)) the value 0.01. Since we obtain the following Bond prices: 0.5612 with
∆t = 1, 0.5648 with ∆t = 0.1 and 0.5649 with ∆t = 0.01

In Table 4, we can see that all formulas converge when the number of Monte Carlo simula-
tions increases. Whereas the bond price value given by formula (6) based on Riccati approach
or formula (10) based on analytic approach converges quicker than the value given by formula
(3). Indeed, it is sufficient to take 400 Monte Carlo simulations, for formulas (6) and (10), to
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converge while it is necessary to take at least 2000 Monte Carlo simulations with formula (3).
The difference of 10−1 on the value given by (6) and (10) could be due to the approximation
error of the conditional expectation at time tn−k of Fk (see. proof of Theorem 3.6). Hence,

our two formulas need less simulations than formula (3) to converge. Moreover we observe
that the Riccati approach formula (6) need a smaller computation time. Only 6.87 sec while
formula (10) needs 60.48 sec and formula (3) needs 96.78 sec. Hence formula based on Riccati
approach needs ten times less times than Analytic approach to converge. Whereas, we know

that we used CIR model for intensity modeling since there exists explicit formula for bond.
Hence as we said before, the analytic approach could be interesting if we would like to obtain
an explicit easy scheme to simulate defaultable bond.

Bond price with respect to the maturity T:

We observe in Table 5 that the three formulas give similar results. Whereas, firstly, we made
these simulations taking 2000 Monte Carlo simulations for the Probabilistic approach (formula
(3)). Secondly, we remark, when the maturity T is greater than 10, that the result given by
the analytic approximation is not better than the other. This relative mispricing was observed

in the non regime switching case and uniform step time model discretization in [6] as soon as
the maturity T is greater than 10.

Table 5. Value of the Defaultable zero coupon bond price at
time 0 with respect to the maturity time T with ∆t = 0.01.

Bond Price Ricatti: 6 (MC = 400) Analytic: 10 (MC = 400) MC: 3 (MC = 2000)

T = 1 0,9926 0,9923 0,9940

T = 2 0,9709 0,9696 0,9770

T = 5 0,8458 0,8405 0,8480

T = 7 0,7376 0,7261 0,7365

T = 10 0,5736 0,5649 0,5770

T = 15 0,3579 0,3948 0,3505

4.1.3. Bond Price in function of the probability that B goes to crisis. Taking
parameters as in Table 2, we evaluate the price of a defaultable zero coupon bond in function
of the probabilities P (Xt+∆t = (0, 1)|Xt = (0, 0)) and P (Xt+∆t = (1, 1)|Xt = (0, 0)). These

are pX1,3 and pX1,4. Hence, we take a parametric transition matrix of the form:

PX =


1− a− 3b a 2b b

0.05 0.85 0.01 0.09
0.05 0.01 0.85 0.09
0.05 0.01 0.01 0.93


where a, b ∈ [0, 1].

The result is stated in Figure 1. We observe when b grows up, which is the probability

P (Xt+∆t = (1, 1)|Xt = (0, 0)), that the price of the defaultable zero coupon bond price of the
firm A decreases. This means that the economic status of the firm B (the probability to go in
crisis) impacts the value of the defaultable zero coupon bond of the firm A.

4.2. Regime switching defaultable intensity estimation. We work now on real data.

We are interesting now in the modeling issue. We will show that our regime switching model
captures well some market features or economics behavior. Hence, we can use this algorithm
to estimate the intensities of the two firms and then construct the Markov copula as explained
in Section 2.
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Figure 1. Price of a defaultable zero coupon bond price in t = 0

for maturity T = 10 and values of a = 0.04 in function of b.
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Figure 2. Greek Spread between the 19/10/2009 to 13/05/2010.

On right, the estimation result (The color blue is when we are in

regime 1 and red for regime 2).

4.2.1. Estimation on Greek sovereign spread between 19/10/2009 to 13/05/2010.

Firstly, the Figure 2, left, shows the plot of the Greek sovereign spread between 19/10/2009
and 13/05/2010. For the estimation, we use the estimation procedure developed and studied
in Goutte and Zou [15] for regime switching Cox Ingersoll Ross process applied to foreign
exchange rate data. Moreover, we assume that there are two regimes. This means that there

is a ”good” one and a ”bad” one economies like a time crisis period and a ”standard” economic
period, or a spike time period and a non spike time period. Our results are stated in Table
4.2.1. Figure 2, right, gives a graphical representation of the states classification obtained by
this procedure.

4.2.2. Interpretations. We can see clearly in Figure 2, right, that there are two significantly
different time periods. The first one between the 19/10/09 and april 2010, and the second one
after april 2010. The second one corresponds to the beginning of the economic world crisis.
Hence, we can see on the estimation results in Table 4.2.1 that parameters values are very
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Table 6. Maximum Likelihood estimation results.

κ̂ θ̂ σ̂ Π̂X
ii πi

Regime 1 0.022860 309.460660 0.774675 0.974977 0.723722

Regime 2 0.117918 620.721205 3.092136 0.934452 0.276278
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Figure 3. On left: Smoothed and Filtered probabilities. On right:

Parameters convergence steps

different in each regime. Before the crisis, we have a mean reverting parameter less than after
crisis, κ̂1 = 0.02286 against κ̂2 = 0.117918. And in the time crisis period the volatility of the
defaultable intensity is multiplied by 4 with respect to the volatility value before crisis. It is

an expected result since we are in a crisis period so the risk of a firm to make default is higher
than in a standard economic situation.

We can also see in the right graph of Figure 3, that the estimation process is fast. In-
deed only 15 iterations of our algorithm are sufficient for convergence to the true estimated

parameters values.
Moreover, to evaluate the good fit classification of our model, we can calculate the Regime

classification measure (RCM) obtained by this regime switching model. In fact, let K > 0 be
the number of regimes, the RCM statistics is then given by

RCM(K) = 100

(
1−

K

K − 1

1

T

T∑
t=1

K∑
i=1

(
P
(
Xt = i|Fλ

T ; Θ̂
)
−

1

K

)2
)

, (23)

where the quantity P
(
Xt = i|Fλ

T ; Θ̂
)

is the smoothed probability given in the left graph on

Figure 3 and Θ̂ is the vector parameter estimation results(
i.e. Θ̂ :=

(
κ̂, θ̂, σ̂, Π̂X

))
. The constant serves to normalize the statistic to be between 0 and

100. Good regime classification is associated with low RCM statistic value: a value of 0 means
perfect regime classification and a value of 100 implies that no information about regimes is

revealed. In our case we obtain a RCM equals to 8.41. Hence, it shows that this model with
regime switching parameters captures very well two significant economics time period. And so
this is a real add for the valuation of defaultable bond.

4.2.3. Methodology. Hence, we can apply this estimation method to find each estimated
parameters for firms or countries A and B. Then, using the copula construction theory defined
in Corollary 2.2 and developed in section 2.2.1, we can apply the pricing formulas given in
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Theorem 2.7 to obtain the price of defaultable bond with respect to the correlation regime
structure of each defaultable intensity regime switching estimations.
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