• 제목/요약/키워드: credit rating

검색결과 176건 처리시간 0.023초

신용평가기능 개선을 위한 과제 (Restoring the Role of Credit Rating Agencies as Gatekeepers)

  • 조성빈
    • KDI Journal of Economic Policy
    • /
    • 제33권2호
    • /
    • pp.81-110
    • /
    • 2011
  • 서브프라임 모기지 및 구조화 상품 등에 대한 부정확한 신용등급은 최근 금융위기 확산의 주요 요인으로 지적되고 있다. 본 논문은 신용평가노력을 관찰할 수 없는 숨겨진 행동모형(hidden action model)을 통해 신용평가회사의 행태 및 규제에 대한 분석을 시도하여 현재 논의되고 있는 신용평가기능 개선을 위한 논의에 보완적인 기여를 하고자 한다. 분석 결과, 도덕적 해이가 존재하면 신용평가노력이 관찰 가능하지 않음으로 인해 사회적으로 최적인 수준보다 낮은 수준의 신용평가노력을 기울임을 확인하였다. 경쟁 및 평판효과를 고려한 확장된 모형의 경우에도 신용평가회사에 사회적으로 최적의 유인을 제공하는 데는 한계가 존재한다. 그리고 부수업무의 존재는 신용평가회사의 노력수준과 사회적 최적 수준 간의 괴리를 확대함을 확인하였다. 따라서 경쟁과 평판에 의한 규율이 불완전한 경우 신용평가회사에 대한 감독 및 잘못된 정보의 제공에 따른 책임의 부과가 필요하다

  • PDF

Corporate credit rating prediction using support vector machines

  • 이영찬
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.571-578
    • /
    • 2005
  • Corporate credit rating analysis has drawn a lot of research interests in previous studies, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper applies support vector machines (SVMs) to the corporate credit rating problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, the researcher uses a grid-search technique using 5-fold cross-validation to find out the optimal parameter values of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, the researcher compares its performance with those of multiple discriminant analysis (MDA), case-based reasoning (CBR), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.

  • PDF

다양한 다분류 SVM을 적용한 기업채권평가 (Corporate Bond Rating Using Various Multiclass Support Vector Machines)

  • 안현철;김경재
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

IFRS 전후 이익조정과 신용평가등급의 관계 (Relationship of earnings and credit rating before and after IFRS)

  • 안수경;김광용
    • 디지털융복합연구
    • /
    • 제12권11호
    • /
    • pp.99-112
    • /
    • 2014
  • 본 연구에서는 기업의 신용평가등급(RANK) 변화(하락,상승)가 실물이익조정에 미치는 영향을 살펴보았다. 가설검증을 위해 2008년부터 2013년까지 한국거래소에 상장되어 있는 기업을 대상으로 총 6년 동안 기업-연도 2,583개의 표본을 사용하여 연구를 진행하였으며 실증분석한 연구결과는 다음과 같다. 첫째, 신용평가등급(RANK)과 실물이익조정의 측정치인 비정상영업현금흐름(ACFO)과 비정상재량적비용(ADE)간에는 양(+)의 관련성이 나타났으며, 비정상제조원가(AMC) 간에는 음(-)의 관련성이 나타났다. 둘째, IFRS 도입과 비정상재량적비용(ADE) 간에는 양(+)의 관련성이 나타났으며, 비정상제조원가(AMC) 간에는 음(-)의 관련성이 나타났다. 셋째, 신용평가등급(RANK)이 상승한 경우 비정상영업현금흐름(ACFO)과는 1%수준에서 유의한 양(+)의 관련성이 나타났고, 비정상재량적비용(ADE)과는 유의하지 않은 음(-)의 관련성이 나타났고, 비정상제조원가(AMC)는 10%수준에서 유의한 양(+)의 관련성이 나타났다. 넷째, 신용평가등급이 하락한 경우 비정상영업현금흐름(ACFO)과는 음(-)의 관련성이 나타났고, 비정상제조원가(AMC)와는 양(+)의 관련성이 나타나 신용평가등급이 하락한 기업은 자본조달비용을 감소시키기 위해 미래의 현금흐름을 포기하더라도 양(+)의 실물이익조정을 행하는 것으로 나타났다.

Frequency Matrix 기법을 이용한 결측치 자료로부터의 개인신용예측 (Predicting Personal Credit Rating with Incomplete Data Sets Using Frequency Matrix technique)

  • 배재권;김진화;황국재
    • Journal of Information Technology Applications and Management
    • /
    • 제13권4호
    • /
    • pp.273-290
    • /
    • 2006
  • This study suggests a frequency matrix technique to predict personal credit rate more efficiently using incomplete data sets. At first this study test on multiple discriminant analysis and logistic regression analysis for predicting personal credit rate with incomplete data sets. Missing values are predicted with mean imputation method and regression imputation method here. An artificial neural network and frequency matrix technique are also tested on their performance in predicting personal credit rating. A data set of 8,234 customers in 2004 on personal credit information of Bank A are collected for the test. The performance of frequency matrix technique is compared with that of other methods. The results from the experiments show that the performance of frequency matrix technique is superior to that of all other models such as MDA-mean, Logit-mean, MDA-regression, Logit-regression, and artificial neural networks.

  • PDF

국내모회사와 해외자회사 신용평가모형의 적합성 검증 연구 (Probability of default validation in a corporate credit rating model)

  • 이우식;김동영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권3호
    • /
    • pp.605-615
    • /
    • 2017
  • 국내 외에서 지급보증과 관련 모회사의 지원 중단으로 신용평가사로부터 높은 등급을 받았던 자회사가 법정관리에 갔던 사태로 투자자의 피해가 발생한 사례가 존재하여 이에 모기업 계열사의 지원 가능성을 배제한 기업의 자체신용도 또는 독자신용등급에 대한 관심이 높아지고 있다. 본 연구에서는 해외자회사를 둔 국내 기업을 대상으로 판별력 분석, 등급화 분석 그리고 안정성 분석을 통해 기업 신용평가모형의 적합성검증을 실시하였으며 주요 실증분석결과 해외자회사의 부도 현황을 볼 때 부도율측면에 있어서 국내모회사보다 상대적으로 낮은 부도율을 나타내고 있는 것을 확인할 수 있었고, 한국모회사가 지급보증을 하는데 있어 해외자회사보다 신용등급이 일반적으로 높은 것으로 나타났다.

우리나라 기업어음등급평가의 정보효과 검증 (Information Content of Commercial Paper Credit Rating Changes In Korea)

  • 박범호;최호석
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2000년도 추계학술대회 및 정기총회
    • /
    • pp.89-92
    • /
    • 2000
  • The purpose of this thesis is to investigate the information content of commercial paper credit rating changes of Korean firms. The result shows neither sinificant daily abnormal returns nor significant cumulative daily abnormal returns over the test window. This ind icates that commercial paper rating changes are not informative to investors. A sensitivity analysis conducted for the portfolio of subsample shows a similar result. This thesis, however, may contribute to the better operation of Korean financial market by providing several directions to establish credit-based financial transactions.

  • PDF

러프집합을 이용한 통합형 채권등급 평가모형 구축에 관한 연구 (A Hybrid Credit Rating System using Rough Set Theory)

  • 박기남;이훈영;박상국
    • 한국경영과학회지
    • /
    • 제25권3호
    • /
    • pp.125-135
    • /
    • 2000
  • Many different statistical and artificial intelligent techniques have been applied to improve the predictability of credit rating. Hybrid models and systems have also been developed by effectively combining different modeling processes or combining the outcomes of individual models. In this paper, we introduced the rough set theory and developed a hybrid credit rating system that combines individual outcomes in terms of rough set theory. An experiment was conducted to compare the prediction capability of the system with those of other methods. The proposed system based on rough set method outperformed the others.

  • PDF

DEFAULTABLE BOND PRICING USING REGIME SWITCHING INTENSITY MODEL

  • Goutte, Stephane;Ngoupeyou, Armand
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.711-732
    • /
    • 2013
  • In this paper, we are interested in finding explicit numerical formulas to evaluate defaultable bonds prices of firms. For this purpose, we use a default intensity whose values depend on the credit rating of these firms. Each credit rating corresponds to a state of the default intensity. Then, this regime switches as soon as one of the credit rating of a firm also changes. Moreover, this regime switching default intensity model allows us to capture well some market features or economics behaviors. Thus, we obtain two explicit different formulas to evaluate the conditional Laplace transform of a regime switching Cox Ingersoll Ross model. One using the property of semi-affine of the model and the other one using analytic approximation. We conclude by giving some numerical illustrations of these formulas and real data estimation results.

기술신용평가기관(TCB) 효율성 제고 및 기업기술력 강화를 위한 평가지표간 상관관계 분석연구 (A Study on Correlation Analysis between TCB Evaluation Indicator and Technology Rating)

  • 손석현;김재영;김재천
    • 기술혁신연구
    • /
    • 제25권4호
    • /
    • pp.1-15
    • /
    • 2017
  • 2014년, 금융위원회는 기술신용평가기관(TCB, Tech Credit Bureaus)을 지정하여 기술신용평가서를 발급하게 하였고 현재까지 5개의 기술신용평가기관과 금융위원회 권고, 레벨 4에 진입한 KEB하나은행, 국민은행, 우리은행, 신한은행 등에서 기술신용평가서를 발급하고 있다. 한편, KEB하나은행의 기술평가모델은 25개의 세부평가항목으로 구성되어 있으며, 이러한 항목등급이 가중 결합되어 기술등급이 산출, 기술등급은 신용등급과 결합하여 최종적으로 기술신용등급이 산출된다. 본 연구에서는 KEB하나은행에서 2016년 하반기에 자체발급한 406건의 기술평가결과를 분석하였으며, 경영주 동업종 근무년수, 기술개발전담부서 보유여부, 기술인력, 연구개발투자금액, 인증수, 특허수를 기반으로 지표간의 상관분석 및 기술등급과의 영향력을 분석하였다. 분석결과에 의하면, 기술개발전담부서, 특허수, 연구개발투자금액 등의 정량적지표가 기업 기술등급에 상당한 영향을 끼치는 것으로 나타났으며, 특히, 기술개발전담부서 보유여부는 기술등급과 가장 높은 상관관계를 나타내고 있음을 나타냈다.