• 제목/요약/키워드: crash

Search Result 1,053, Processing Time 0.035 seconds

Information Risk and Cost of Equity: The Role of Stock Price Crash Risk

  • SALEEM, Sana;USMAN, Muhammad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.623-635
    • /
    • 2021
  • The purpose of this research is to examine the impact of information risk on the Cost of Equity (COE) and whether the risk of a stock price crash mediates the relation between information risk and COE. To test the dynamic nature of the proposed model, the two-step system GMM dynamic panel estimators are applied to all the non-financial firms listed on the Pakistan Stock Exchange (PSX) from 2007- 2018. The results of this study show that all three types of information risk, as well as the risk of the share price crash, increases the COE. The crash risk strengthens the impact of information risk on the COE. Moreover, these three information risks are correlated with each other and an increase in information quality reduces the effect of asymmetric information and improves the investor interpreting ability, while an increase in private information decreases the transparency. The finding is crucial for asset pricing, portfolio management, and information disclosure. This study contributes to the literature by providing novel findings on the impact of three different types of information risk, i.e. private information, quality of information, and transparency of information on the COE as well as whether crash risk mediates the relationship.

Crash Clearance Time Analysis of Korean Freeway Systems using a Cox Model (Cox 모형을 활용한 고속도로 사고 처리시간 영향인자 분석)

  • Chung, Younshik;Kim, Seon Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1017-1023
    • /
    • 2017
  • Duration induced by freeway crashes has a critical influence on traffic congestion. In general, crash duration composes detection and verification, response, and clearance time. Of these, the crash clearance time determined by a crash clearance team has attracted considerable attention in the freeway congestion management since the interest of the first two time stages faded away with increasing ubiquitous mobile phone users. The objective of this study is to identify the critical factors that affect freeway crash clearance time using a Cox's proportional hazard model. In total, 6,870 crash duration data collected from 30 major Korean freeways in 2013 were used. As a result, it was found that crashes during the night, with trailer or larger size truck, and in tunnel section contribute to increasing clearance time. Crashes associated with fatality, completed damage of crashed vehicle (s), and vehicles' fire or rollover after crash also lead to increasing clearance time. Additionally, an increase in the number of vehicles involved resulted in longer clearance time. On the other hand, crashes in the vicinity of tollgate, by passenger car, during spring, on flat section, and of car-facility type had longer clearance time. On the basis of the results, this paper suggested some strategic plans and mitigation measures to reduce crash clearance time on Korean freeway systems.

Numerical Simulation of Full-Scale Crash Impact Test for Fuel Cell of Rotorcraft (회전익항공기 연료셀 충돌충격시험 Full-Scale 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan;Kim, Sung Jun;Kim, Soo Yeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.343-349
    • /
    • 2013
  • Crashworthy fuel cells have a great influence on improving the survivability of crews. Since 1960's, the US army has developed a detailed military specification, MIL-DTL-27422, defining the performance requirements for rotorcraft fuel cells. In the qualification tests required by MIL-DTL-27422, the crash impact test should be conducted to verify the crashworthiness of fuel cell. Success of the crash impact test means the improvement of survivability of crews by preventing post-crash fire. But, there is a big risk of failure due to huge external load in the crash impact test. Because the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, the failure of crash impact test can result in serious delay of a entire rotorcraft development. Thus, the numerical simulations of the crash impact test has been required at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. Present study performs the numerical simulation using SPH(smoothed particle hydro-dynamic) method supported by a crash simulation software, LS-DYNA. Test condition of MIL-DTL-27422 is reflected on analysis and material data is acquired by specimen test of fuel cell material. As a result, the resulting equivalent stresses of fuel cell itself are calculated and vulnerable areas are also evaluated.

A Study on the Collision Behavior of Fairy Cycle to Vehicle (어린이용 자전거의 차량 충돌거동에 관한 연구)

  • Kang, Dae-Min;Ahn, Seung-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.106-111
    • /
    • 2012
  • Recently the usage of bicycle has increased steeply in Korea owing to traffic culture of well- being. In a car to bicycle accident investigation, the throw distance of bicycle is very important factor for reconstructing of the accident. The variables that influence on the throw distance of bicycle can be classified into the factors of vehicle and bicycle. Simulations and collision tests in actual car to bicycle accident were executed for obtaining throw distance of bicycle. The simulations were done by PC-$CRASH^{TM}$ and for actual crash tests sand bags were used for the behavior of bicyclist instead of dummy. Factors considered were vehicle velocity and the moving angles of bicycle, also the types of bicycle and vehicle were fairy cycle and automobile, respectively. From the results, the throw distances of a head-on tire collision of $0^{\circ}$ direction was longer than that of tire crash test of $45^{\circ}$ direction, and the throw distances of a head -on frame crash test of $90^{\circ}$ direction was longer than that of frame crash test of $45^{\circ}$ direction. In addition restitution coefficient between vehicle and bicycle was estimated as about 0.1 with based on actual crash tests. Finally the increaser vehicle velocity the longer the throw distances of bicycle, and the results of simulation were relatively good agreement to the experimental results.

The study on the buckling instability of the expansion tube type crash energy absorber by using the FEM (FEM을 이용한 확관형 충돌에너지 흡수부재의 좌굴불안전성에 관한 연구)

  • Choi, Won-Mok;Jung, Hyun-Sung;Kwon, Tae-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.774-779
    • /
    • 2007
  • The crash energy absorbers used in the trains normally are classified into two types. The first is the structure type, which mainly used in not only the primary structure of train but also the crash energy absorbers at the critical accidents. The second is the module type, which just absorbs the crash energy independently and attached onto the structures of the trains. The expansion tube is widely used as the module type of the crash energy absorbers, especially in the trains that have a heavy mass. Since the crash energy is absorbed by means of expanding the tube in the radial direction, the features of the expansion tube have the uniform load during the compression. As the uniform load remains in sudden impact, the expansion tube is effective to decrease acceleration of passengers when the train accident occur. The buckling instability of the expansion tubes is affected by the boundary conditions, thickness and length of tube. In this study, the effects of the length and thickness of the expansion tubes under the arbitrary load on the buckling are studied using the ABAQUS/standard and ABAQUS/explicit, a commercial finite element analysis program, and then presents the guideline to design the expansion tubes. The analysis processes to compute the buckling load consist of the linear buckling analysis and the nonlinear post-buckling analysis. To analysis the nonlinear post-buckling analysis, the geometry imperfections are introduced by applying the linear buckling modes to nonlinear post-buckling analysis.

  • PDF

A Study on Traffic Accident Reconstruction through Vehicle Crash Test (충돌시험을 통한 교통사고 재현 연구)

  • Kim, Guanhee;Lim, Jonghun;Park, Insong;Chun, Youngbum;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.58-63
    • /
    • 2013
  • It is very difficult to evaluate the impact speed, who caused the accident and what the injury risk of the vehicle occupants was from the outcome of the accident. That's the main reason why there are so many insurance fraud related to vehicle accident. In this study, a vehicle crash accident suspected to an insurance fraud had been reconstructed to evaluate crash speed and the relationship between the crash accident and passenger injury risk. To do this, the scene was reconstructed based on accident investigation report and three vehicle crash tests were done at 27kph, 37kph and 70kph. The crash speed of 27kph and 37kph were chosen based on the damaged vehicle and 70kph was chosen based on the driver's statement. Based on the damage of vehicle and dummy injury measure, impact speed is estimated around 20 to 30kph and the dummy measures show that the passengers are not seems to be severely injured in this speed range.

The Study of analysis and test for crash survival about the Crash Protected Module in Black Box used at aircraft (항공기용 블랙박스의 자료보호모듈 극한환경해석 및 시험에 관한 연구)

  • Lee, Sock-Kyu;Lee, Byoung-Ho;Choi, Ji-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.61-68
    • /
    • 2012
  • The purpose of Crash Protected Module in Black Box used at aircraft is to protect a stored information(Flight data & Cockpit Voice) safely even after extreme environment like a plane crash. This study shows the structure & thermal analyses and the comparisons of predictions and results of tests about CPM for Crash Survival through extreme environment such as Penetration Resistance, High Temperature Fire, Low Temperature Fire. Specially, the Effect of housing thickness change was studied through the Penetration Resistance analysis using LS-DYNA, and the influence of volume ratio change between phase change material and thermal insulation material was studied through the High Temperature & Low Temperature analysis using Icepak. Also, structural and thermal reliability of CPM was validated through the tests.

The Impact of Disclosure Quality on Crash Risk: Focusing on Unfaithful Disclosure Firms (공시품질이 주가급락에 미치는 영향: 불성실공시 지정기업을 대상으로)

  • RYU, Hae-Young
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.6
    • /
    • pp.51-58
    • /
    • 2019
  • Purpose - Prior studies reported that the opacity of information caused stock price crash. If managers fail to disclose unfavorable information about the firm over a long period of time, the stock price is overvalued compared to its original value. If the accumulated information reaches a critical point and spreads quickly to the market, the stock price plunges. Information management by management's disclosure policy can cause information uncertainty, which will lead to a plunge in stock prices in the future. Thus, this study aims at examining the impact of disclosure quality on crash risk by focusing on the unfaithful disclosure firms. Research design, data, and methodology - This study covers firms listed on KOSPI and KOSDAQ from 2004 to 2013. Firms excluded from the sample are non-December firms, capital-eroding firms, and financial firms. The financial data used in the research was extracted from the KIS-Value and TS2000 database. Unfaithful disclosure firm designation data was collected from the Korea Exchange's electronic disclosure system (kind.krx.co.kr). Stock crash is measured as a dummy variable that equals one if a firm experiences at least one crash week over the fiscal year, and zero otherwise. Results - Empirical results as to the relation between unfaithful disclosure corporation designation and stock price crashes are as follows: There was a significant positive association between unfaithful disclosure corporation designation and stock price crash. This result supports the hypothesis that firms that have previously exhibited unfaithful disclosure behavior are more likely to suffer stock price plunges due to information asymmetry. Second, stock price crashes due to unfaithful disclosures are more likely to occur in Chaebol firms. Conclusions - While previous studies used estimates as a proxy for information opacity, this study used an objective measure such as unfaithful disclosure corporation designation. The designation by Korea Exchange is an objective evidence that the firm attempted to conceal and distort information in the previous year. The results of this study suggest that capital market investors need to investigate firms' disclosure behaviors.

A Study on the Crashworthiness Evaluation and Performance Improvement of Tilting Train Carbody Structure made of Sandwich Composites (틸팅열차의 샌드위치 복합재 차체 구조물에 대한 충돌안전도 평가 및 향상방안 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Han, Sung-Ho
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2011
  • This paper describes the crashworthiness evaluation and performance improvement of tilting train made of sandwich composites. The applied sandwich composite of carbody structure was composed of aluminum honeycomb core and glass/epoxy & carbon/epoxy laminate composite facesheet. Crashworthiness analysis of tilting train was carried out using explicit finite element analysis code LS-DYNA 3D. The 3D finite element model and 1D equivalent model were applied to save the finite element modeling and calculation time for crash analysis. The crash conditions of tilting train were conducted according to four crash scenarios of the Korean railway safety law. It found that the crashworthiness analysis results were satisfied with the performance requirements except the crash scenario-2. In order to meet the crashworthiness requirements for crash scenario-2, the stiffness reinforcement for the laminate composite cover and metal frames of cabmask structure was proposed. Consequentially, it has satisfied the requirement for crash scenario-2.

A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability (${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.