• Title/Summary/Keyword: cracks pattern

Search Result 181, Processing Time 0.047 seconds

Experimental Test on the Effect of Onsite Welding of Steel Plates for a Joint Between Concrete Columns and a Steel Belt Truss

  • Shim, Hak Bo;Yun, Da Yo;Park, Hyo Seon
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • To connect exterior reinforced concrete (RC) columns with the steel belt truss, the gusset plates are welded to the steel plates embedded in the RC column. Then, the concrete around an embedded plate is very likely to be damaged by the heat input from a long-time (6 to 48 hours) welding of the embedded and gusset plates at a joint between RC columns and steel belt truss. However, very few studies have assessed the concrete damage caused by the welding heat between embedded and gusset plates, and no clear onsite solution has been found. In this paper, experimental tests have been carried out on 4 full-scale specimen to analyze the effect of long-time (about 6 hours) onsite welding (1-side welding and 3-side welding) between a gusset plate and an embedded plate in high strength concrete with compressive strength of 55 MPa and 80 MPa on RC columns. The effect of the long-time welding heat of embedded and gusset plates, which are used in real high-rise building construction sites, on concrete is analyzed in terms of the following three items: 1) temperature distribution, 2) pattern and characteristics of cracks, and 3) effect of the cracks on the compressive strength of RC column. Based on the experimental results, even though the heat input up to about 150? from the long-time onsite welding on the high-strength concrete column for the joint could result in concrete cracks in a radial form, it is found that the welding cracks have no effect on the axial stiffness and strength of the concrete column.

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks

  • Shemirani, Alireza Bagher;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Hosseini, Seyed shahin
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2018
  • A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.

The effect of radial cracks on tunnel stability

  • Zhou, Lei;Zhu, Zheming;Liu, Bang;Fan, Yong
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.721-728
    • /
    • 2018
  • The surrounding rock mass contains cracks and joints which are distributed randomly around tunnels, and in the process of tunnel blasting excavation, radial cracks could also be induced in the surrounding rock mass. In order to clearly understand the impact of radial cracks on tunnel stability, tunnel model tests and finite element numerical analysis were implemented in this paper. Two kinds of materials: cement mortar and sandstone, were used to make tunnel models, which were loaded vertically and confined horizontally. The tunnel failure pattern was simulated by using RFPA2D code, and the Tresca stresses and the stress intensity factors were calculated by using ABAQUS code, which were applied to the analysis of tunnel model test results. The numerical results generally agree with the model test results, and the mode II stress intensity factors calculated by ABAQUS code can well explain the model test results. It can be seen that for tunnels with a radial crack emanating from three points on tunnel edge, i.e., the middle point between tunnel spandrel and its top with a dip angle $45^{\circ}$, the tunnel foot with a dip angle $127^{\circ}$, and the tunnel spandrel with $135^{\circ}$ with tunnel wall, the tunnel model strength is about a half of the regular tunnel model strength, and the corresponding tunnel stability decreases largely.

A Case Study of Concrete Pavement Deterioration by Alkali-Silica Reaction in Korea

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The concrete pavement of the Seohae Highway in Korea has suffered from serious distress, only four to seven years after construction. Deterioration due to Alkali-Silica Reaction (ASR) has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the deterioration caused by an alkali-silica reaction of concrete pavement in Korea. The investigation methods included visual inspection and Automatic Road Analyzer (ARAN) analysis of surface cracks, coring for internal cracks, stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as follows: the crack pattern of the concrete pavement in Korea was longitudinal cracking, map cracking or D-cracking. Local areas of damage were noticed four to five years after construction. The cracks started from edges or joints and spread out to slabs. The most intensive cracking was observed at the intersection of the transverse and longitudinal joints. Where cracking was the most intense, pieces of concrete and aggregate had spalled away from top surface and joint interface area. The progress of deterioration was very fast. The reaction product of alkali-silica gel was clearly identified by its generally colorless, white, or very pale yellow hue seen through a stereo optical microscopy. The typical locations of the reaction product were at the interface between aggregate and cement paste in a shape of a rim, within aggregate particles in the cracks, and in the large void in the cement paste. Most of the white products were found at interface or internal aggregates. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe from alkali-silica reaction.

암반절리와 시공단계를 고려한 지하 구조체의 해석

  • 김문겸;장정범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.179-194
    • /
    • 1991
  • This paper explains outline of a behavior analysis program for underground structures, and its application to a tunnel problem. The program can deal with elasto-plastic behavior of medium and supporting structures, discontinuous behavior due to existing joint, creation and propagation of cracks. in-situ loading condition, and incremental behavior due to stepwise excavation, etc. The program also has additional capabilities such as graphic output of mesh, displacement pattern, stress condition, and safety factor contour, and automatic mesh generation during the excavation steps.

  • PDF

A Experimental Study on the Reinforcing Effects of RC Voided Slab Bridge with Steel Plate/CFS (강판 및 탄소섬유쉬트를 이용한 중공슬래브교의 보강 효과에 관한 실험 연구)

  • 구현본;이정우;정광회;정연주;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.787-792
    • /
    • 2002
  • The voided slab have many advantages, light weight, high load-distribution capacity, low cost and beautiful appearance, etc. But they have also many cracks due to difficulties in designs and construction, analysis, shrinkage, installation and rising force of voided tube. This paper presents the retrofit effects with steel plate(SP)/carbon fiber sheet(CFS) of RC voided slab. As a results of this study, it proved that the strip pattern has to be profitable than full-face pattern in performance such as crack, ultimate loads, stiffness. Retrofit length has many influence on retrofit effects, as the length increases, performance and stability of end blocks higher. Also, it proved that the retrofit on full-section has to be profitable than voided-section in performance, and the overlay length of CFS is desirable to extent approximately and welding(V-cut) has to be efficient than anchors in SP connection. But the kinds of end block and anchor has not influence on retrofit effects.

  • PDF

A Study on Measurement of Crack Length by using Laser Speckle Interferometry (레이저 스페클 간섭을 이용한 균열 길이 측정에 관한 연구)

  • Kang, Young-June;Bae, Jin-Kil;Ryu, Weon-Jae;Park, Nan-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.34-41
    • /
    • 2001
  • More accurate and fast inspection method for mechanical parts and structure is required to guarantee the safety. Conventional methods using compliance method, eddy current method, ultrasonic wave, acoustic emission for non-destructive testing in mechanical parts and structure have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money, and manpower. In this study, in order to overcome these shortcomings, we used In-plane Electronic Speckle pattern Interferometry(In-plane ESPI) that was full-field measurement and noncontact method. We detected the cracks of the specimen at a real time and measured the length of the crack by using In-place ESPI system. Finally, we compared this results with conventional microscope method.

  • PDF

A Technique for Pattern Recognition of Concrete Surface Cracks (콘크리트 표면 균열 패턴인식 기법 개발)

  • Lee Bang-Yeon;Park Yon-Dong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.369-374
    • /
    • 2005
  • This study proposes a technique for the recognition of crack patterns, which includes horizontal, vertical, diagonal($-45^{\circ}$), diagonal($+45^{\circ}$), and random cracks, based on image processing technique and artificial neural network. A MATLAB code was developed for the proposed image processing algorithm and artificial neural network. Features were determined using total projection technique, and the structure(no. of layers and hidden neurons) and weight of artificial neural network were determined by learning from artificial crack images. In this process, we adopted Bayesian regularization technique as a generalization method to eliminate overfitting Problem. Numerical tests were performed on thirty-eight crack images to examine validity of the algorithm. Within the limited tests in the present study, the proposed algorithm was revealed as accurately recognizing the crack patterns when compared to those classified by a human expert.

Development of Automatic Crack Identification Algorithm for a Concrete Sleeper Using Pattern Recognition (패턴인식을 이용한 콘크리트침목의 자동균열검출 알고리즘 개발)

  • Kim, Minseu;Kim, Kyungho;Choi, Sanghyun
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.374-381
    • /
    • 2017
  • Concrete sleepers, installed on majority of railroad track in this nation can, if not maintained properly, threaten the safety of running trains. In this paper, an algorithm for automatically identifying cracks in a sleeper image, taken by high-resolution camera, is developed based on Adaboost, known as the strongest adaptive algorithm and most actively utilized algorithm of current days. The developed algorithm is trained using crack characteristics drawn from the analysis results of crack and non-crack images of field-installed sleepers. The applicability of the developed algorithm is verified using 48 images utilized in the training process and 11 images not used in the process. The verification results show that cracks in all the sleeper images can be successfully identified with an identification rate greater than 90%, and that the developed automatic crack identification algorithm therefore has sufficient applicability.

Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.479-493
    • /
    • 2019
  • In this paper, the interaction between notch and micro pore under uniaxial compression has been performed experimentally and numerically. Firstly calibration of PFC2D was performed using Brazilian tensile strength, uniaxial tensile strength and biaxial tensile strength. Secondly uniaxial compression test consisting internal notch and micro pore was performed experimentally and numerically. 9 models consisting notch and micro pore were built, experimentally and numerically. Dimension of these models are 10 cm*1 cm*5 cm. the length of joint is 2 cm. the angularities of joint are $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. For each joint angularity, micro pore was situated 2 cm above the lower tip of the joint, 2 cm above the middle of the joint and 2 cm above the upper of the joint, separately. Dimension of numerical models are 5.4 cm*10.8 cm. The size of the cracks was 2 cm and its orientation was $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. Diameter of pore was 1cm which situated at the upper of the notch i.e., 2 cm above the upper notch tip, 2 cm above the middle of the notch and 2 cm above the lower of the notch tip. The results show that failure pattern was affected by notch orientation and pore position while uniaxial compressive strength is affected by failure pattern.