• 제목/요약/키워드: cracks parameters

검색결과 329건 처리시간 0.027초

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

Anticipated and actual performance of composite girder with pre-stressed concrete beam and RCC top flange

  • Gurunaathan, K.;Johnson, S. Christian;Thirugnanam, G.S.
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.117-124
    • /
    • 2017
  • Load testing is one of the important tests to determine if the structural elements can be used at the intended locations for which they have been designed. It is nothing but gradually applying the loads and measuring the deflections and other parameters. It is usually carried out to determine the behaviour of the system under service/ultimate loads. It helps to identify the maximum load that the structural element can withstand without much deflection/deformation. It will also help find out which part of the element causes failure first. The load-deflection behaviour of the road bridge girder has been studied by carrying out the load test after simulating the field conditions to the extent possible. The actual vertical displacement of the beam at mid span due to the imposed load was compared with the theoretical deflection of the beam. Further, the recovery of deflection at mid span was also observed on removal of the test load. Finally, the beam was checked for any cracks to assert if the beam was capable of carrying the intended live loads and that it could be used with confidence.

T-형 복합 균열이 존재하는 증기발생기 전열관의 파열압력 시험 및 해석 (Experimental and Analytical Study on Burst Pressure of a Steam Generator Tube with a T-type Combination Crack)

  • 신규인;김홍덕;정한섭;최영환;박재학
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.158-164
    • /
    • 2004
  • Steam generator tubes experience widespread degradations such as stress corrosion cracking, wear, tube rupture, denting, fatigue and so on. The resulting damages can cause tube bursting or leak of the primary water which contains radioactivity Therefore the allowable size of the damage is required to be determined on the maintenance purpose. The burst pressure of a tube with a T-type combination crack consisting of longitudinal and circumferential cracks is obtained experimentally and analytically. Fracture parameters such as stress intensity factor and crack opening angle are investigated. Also the burst pressure for a T-type combination crack is compared with that of a single longitudinal crack to develop a length-based criteria.

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.

DETERMINISTIC EVALUATION OF DELAYED HYDRIDE CRACKING BEHAVIORS IN PHWR PRESSURE TUBES

  • Oh, Young-Jin;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.265-276
    • /
    • 2013
  • Pressure tubes made of Zr-2.5 wt% Nb alloy are important components consisting reactor coolant pressure boundary of a pressurized heavy water reactor, in which unanticipated through-wall cracks and rupture may occur due to a delayed hydride cracking (DHC). The Canadian Standards Association has provided deterministic and probabilistic structural integrity evaluation procedures to protect pressure tubes against DHC. However, intuitive understanding and subsequent assessment of flaw behaviors are still insufficient due to complex degradation mechanisms and diverse influential parameters of DHC compared with those of stress corrosion cracking and fatigue crack growth phenomena. In the present study, a deterministic flaw assessment program was developed and applied for systematic integrity assessment of the pressure tubes. Based on the examination results dealing with effects of flaw shapes, pressure tube dimensional changes, hydrogen concentrations of pressure tubes and plant operation scenarios, a simple and rough method for effective cooldown operation was proposed to minimize DHC risks. The developed deterministic assessment program for pressure tubes can be used to derive further technical bases for probabilistic damage frequency assessment.

보강점토의 파괴거동에 관한 연구 (A Study on the Failure Behavior of Reinforced Clay)

  • 유한규
    • 한국지반공학회지:지반
    • /
    • 제13권1호
    • /
    • pp.159-168
    • /
    • 1997
  • 보강재의 방향, 표면거칠기 그리고 점토의 함수비가 보강점토의 응력-변형률 거동 및 파괴거동에 미치는 영향을 조사하기 위하여 강으로 보강된 점토를 대상으로 일축압축시험을 실시하였다. 시험결과 보강점토 강도의 증가 또는 감소는 보강재의 방향과 점토의 함수비에 영향을 받고 있는 것으로 나타났다. 보강재 설치방향에 따른 점토의 강도저하는 점토와 보강재의 경계면 끝에서 발생된 균열과 관련이 있는 것으로 판단된다. 파괴역학 이론을 적용하여 보강점토의 파괴 거동에 대한 이론적인 고찰을 하였으며 시험 결과를 이론적인 예측결과와 비교하였다. 폐합된 균열이 내재된 물질의 파괴기준을 적용하여 예측한 균열진행 방향은 시험으로부터 측정된 값과 비교적 잘 일치되었다.

  • PDF

케이블로 지지된 프리스트레스트 콘크리트 박스거더 정착부의 응력특성에 관한 연구 (A Study on Stress Properties for Cable Anchorage zone of Cable Stayed Prestressed Concrete Box Girder)

  • 태기호;김두환;변윤주;송관권
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.84-92
    • /
    • 2012
  • Anchorage zone in prestressed concrete cable stayed bridges is very important area due to the more accurate analysis is needed to estimate the behavior. In the study, since the cable anchorage zone in the prestressed concrete cable-stayed bridge is subject to a large amount of concentrated tendon forces, it shows very complicated stress distributions and causes a serious local cracks. Accordingly, It is necessary to investigate the parameters of affecting the stress properties, such as the cable inclination, the position of anchor plate, the modeling method and the three dimensional effect. The tensile stress distribution of anchorage zone is compared to the actual design condition by varing the stiffness of spring element in the local modeling and an appropriate position of anchor plate is determined. These results would be elementary data to the stress state of anchorage zone and more efficient design.

기계 시각과 인공 신경망을 이용한 파란의 판별 (Detection of Surface Cracks in Eggshell by Machine Vision and Artificial Neural Network)

  • 이수환;조한근;최완규
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.409-414
    • /
    • 2000
  • A machine vision system was built to obtain single stationary image from an egg. This system includes a CCD camera, an image processing board and a lighting system. A computer program was written to acquire, enhance and get histogram from an image. To minimize the evaluation time, the artificial neural network with the histogram of the image was used for eggshell evaluation. Various artificial neural networks with different parameters were trained and tested. The best network(64-50-1 and 128-10-1) showed an accuracy of 87.5% in evaluating eggshell. The comparison test for the elapsed processing time per an egg spent by this method(image processing and artificial neural network) and by the processing time per an egg spent by this method(image processing and artificial neural network) and by the previous method(image processing only) revealed that it was reduced to about a half(5.5s from 10.6s) in case of cracked eggs and was reduced to about one-fifth(5.5s from 21.1s) in case of normal eggs. This indicates that a fast eggshell evaluation system can be developed by using machine vision and artificial neural network.

  • PDF

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.

이차원 하이브리드 요소를 이용한 균열을 내포하는 용접점의 유한요소 파단해석 (Fracture Analysis of Spot-Welds with Edge Cracks using 2-D Hybrid Special Finite Element)

  • 송정한;양춘휘;허훈;김홍기;박성호
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.484-489
    • /
    • 2004
  • This paper employed a systematic analysis using a 2-D hybrid special finite element containing an edge crack in order to describe the fracture behavior of spot-welds in automotive structures. The 2-D hybrid special finite element is derived form a mixed formulation with a complex potential function with the description of the singularity of a stress field. The hybrid special finite element containing an edge crack can give a better description of its singularity with only one hybrid element surrounding one crack. The advantage of this special element is that it can greatly simplify the numerical modeling of the spot welds. Some numerical examples demonstrate the validity and versatility of the present analysis method. The lap-shear, lap-tension and angle-clip specimens are analyzed and some useful fracture parameters such as the stress intensity factor and the initial direction of crack growth are obtained simultaneously.