• 제목/요약/키워드: cracks development

검색결과 514건 처리시간 0.02초

Research on the factors affecting the development of shrinkage cracks of rammed earth buildings

  • Zhao, Xiang;Cai, Hengli;Zhou, Tiegang;Liu, Ling;Ding, Yijie
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.365-375
    • /
    • 2021
  • Rammed earth (RE) buildings have existed all over the world for thousands of years, and have gained increasing attention because of its sustainable advantages, however, the shrinkage cracks reduce its bearing capacity and seriously affect its durability and applicability. In this study, the shrinkage cracks test was carried out to investigate the effects of initial water content, proportion of sand and gravel, compaction degree, thickness and the additives (polypropylene fiber, cement and sodium silicate) of shrinkage cracks in RE buildings, ten groups of RE samples were prepared and dried outdoors to crack. Four quantitative parameters of geometrical structure of crack patterns were used to evaluate the development of cracks. The results show that the specimens cracking behavior and the geometrical structure of crack patterns are significantly influenced by these considered factors. The formation of crack can be accelerated with the increase of initial water content and thickness of specimen, while restricted with the increase of the compaction degree and the proportion of sand and gravel. Moreover, the addition of 1% polypropylene fiber, 10% cement and 0.5 volume ratio sodium silicate can significantly restrain the form and development of cracks. In RE construction, these factors should be considered comprehensively to prevent the harm caused by shrinkage cracks. Further works should be carried out to obtain the optimum dosage of the additives, which can benefit the construction of RE buildings in future.

압축피로하중에 의한 반려암, 사암 및 대리암에서의 미세균열 발달 (Microcrack Developement in Gabbro, Sandstone and Marble due to Fatigue Stress)

  • 장보안;김재동
    • 터널과지하공간
    • /
    • 제5권3호
    • /
    • pp.240-250
    • /
    • 1995
  • Microcrack development in the macheon gabbro, the Sangju sandstone and the Jungsun marble due to fatigue stresses was investigated using differential strain analysis and microscopic observations from fluorescent-dyed thin sections. In the Macheon gabbro, various types of cracks, including gran boundary cracks, cleavage cracks, intragranular cracks adn intergranular cracks were developed. However, only grain boundary cracks were produced in the Sangju sandstone and the Jungsun marble due to fatigue stress. Many microcracks were produced due to fatigue stresses in the macheon gabbro. However, few microcracks were produced in the Sangju sandstone and the Jungsun marble. Fatigue stresses produced new microcracks in the Junngsun marble and the Macheon gabbro, but only pre-existing grain boundary cracks were lengthened in the Sangju snadstone. Most microcracks were produced within a few tens of numbers of cyclic loading, indicating that rocks under fatigue stresses will be damaged at the early stage of cyclic loading.

  • PDF

웹기반 콘크리트 구조물 균열진단 시스템 개발 (Development of Web based System for Diagnosing the Causes of Cracks In Reinforced Concrete)

  • 하주형;조윤구;이석홍
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.63-66
    • /
    • 2007
  • In recent years, the concrete cracks in most construction field have been widely presented and developed. Also it is well known the repair cost of the concrete cracks have been rapidly increased in Korea. So the concrete crack expert system was developed to minimize the repair cost and to support the field engineer. The feature of this web based system for diagnosing the causes of concrete cracks is comprised of comfortable user application.

  • PDF

가중함수법에 의한 기계적 체결홀에 존재하는 타원호형 관통균열의 음력확대계수 해석 ( I ) - 가중함수법의 전개 - (Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method ( I ) - Development of Weight Function Method -)

  • 허성필;양원호;현철승
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1659-1670
    • /
    • 2001
  • It has been reported that cracks at mechanical fastener holes usually nucleate as elliptical corner cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. The weight function method is an efficient technique to calculate the stress intensity factors fur elliptical cracks using uncracked stress field. In this study the weight function method for three dimensional mixed-mode problem applied to elliptical comer cracks Is modified for elliptical arc through cracks and the stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by the weight function method. This study consists of two parts and in part I , the weight function method for elliptical arc through cracks is developed and verified.

비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석 (The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone)

  • 진태은;최형집;이강용
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

콘크리트 터널 라이닝 균열검사 시스템 개발에 관한 연구 (Development of Inspection System for Crack on the Lining of Concrete Tunnel)

  • 고봉수;손영갑;신동익;김병화;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.66-72
    • /
    • 2004
  • To assess tunnel safety, cracks in tunnel lining are measured by inspectors, who observe cracks with their naked eyes and record them. But manual inspection is slow, and measured crack data is subjective. Therefore, this study proposes inspection system fur measuring cracks in tunnel lining and providing objective crack data to be used in safety assessment. The system consists of On-vehicle system and Laboratory system. On-Vehicle system acquires image data with line CCD camera on scanning along the tunnel lining. Laboratory system extracts crack information from the acquired image using image processing. Measured crack information is crack thickness, length and orientation. To improve accuracy of crack recognition, the geometric properties and patterns of cracks in concrete structure were applied to image processing. The proposed system was verified with experiments in both laboratory environment and field environment such as subway tunnel.

이미지 프로세싱 기반 철근콘크리트 구조물의 균열진단 로봇 개발에 관한 연구 (A Study on the Development of Crack Diagnosis Robot for Reinforced Concrete Structures Based on Image Processing)

  • 김한솔;장종민;김영관;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.103-104
    • /
    • 2022
  • Cracks may occur in reinforced concrete (RC) structures due to various physical and chemical factors, and the growth of cracks causes deterioration of the structure's performance. It is important to prevent the expansion of cracks through periodic diagnosis of cracks in structures. In order to enable free crack exploration even in a narrow space, a construction robot using a Mecanum wheel that can move up, down, left and right and rotate in place was designed. High-quality crack images were periodically collected through the camera, and the image fragments stored during the exploration were combined into a single photo after the exploration was completed. The robot detected cracks with a width of 0.2 mm or more on the concrete probe surface with an accuracy of about 90% or more.

  • PDF

황마사와 우레탄을 이용한 콘크리트 익스펜션 조인트 및 균열 적용에 관한 실험적 연구 (An Experimental Study for Application on Concrete Expansion Joint and on Cracks Using Oakum and Urethane Resin)

  • 최은수;고위경;배기선;오상근;안상덕
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1085-1090
    • /
    • 2000
  • It is socially increasing the need to maintenance of building's durability and management for building's safety. It has happened in waterproofing field, especially in case of water leakage in expansion joint and cracks, lacking basic design for waterproofing. After the completed of construction, there are many troubles something like this. Therefore it need for development to prevent from water leakage, using oakum and urethane in expansion joint and cracks as a method for waterproofing.

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • 제4권3호
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.