• Title/Summary/Keyword: cracking shear strength

Search Result 197, Processing Time 0.037 seconds

Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building (격납건물 내압해석을 위한 철근콘크리트 쉘 유한요소)

  • Lee, Hong-Pyo;Choun, Young-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.577-585
    • /
    • 2009
  • A 9-node degenerated shell finite element(FE), which has been developed for assessment of ultimate pressure capacity and nonlinear analysis for nuclear containment building is described in this paper. Reissner-Midnlin(RM) assumptions are adopted to develop the shell FE so that transverse shear deformation effects is considered. Material model for concrete prior to cracking is constructed based on the equivalent stress-equivalent strain relationship. Tension stiffening model, shear transfer mechanism and compressive strength reduction model are used to model the material behavior of concrete after cracking. Niwa and Aoyagi-Yamada failure criteria have been adapted to find initial cracking point in compression-tension and tension-tension region, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

An Investigation on the Ultimate Strength of Duplex Stainless Steel (STS329FLD) Bolted Connections with Two Bolts (2행 1열 듀플렉스계 스테인리스강(STS329FLD) 볼트접합부의 최대내력 조사)

  • An, Sung-Ho;Kim, Geun-Young;Hwang, Bo-Kyung;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.55-63
    • /
    • 2018
  • Recently, the use of duplex stainless steel which with a two-phase microstructure (equal mixture of ferrite and austenite) has been increased in a variety of industrial fields due to higher strength leading to weight saving, greater corrosion resistance(particularly, stress corrosion cracking) and lower price. However, currently, stainless steels are not included in the structural materials of Korean Building Code and corresponding design standards are not specified. In this paper, experimental studies have been performed to investigate the structural behaviors of duplex stainless steel (STS329FLD) bolted connection with two bolts for providing the design data. Main variables are shear connection type (single shear and double shear) and end distance parallel to the direction of applied force. Fracture modes at the final step of test were classified into typical block shear fracture, tensile fracture and curling. Curling occurrence in single shear connection led to ultimate strength drop by up to 20%. Test strengths were compared with those by current design specifications such as AISC/AISI/KBC, EC3 and AIJ and proposed equations by existing studies. For specimens with no curling, Clement & Teh's equation considering the active shear plane provided a higher strength estimation accurancy and for specimens with curling, Kim & Lim's equation considering strength reduction by curling was also overly unconservative to predict the ultimate strength of curled connections.

Shear Behavior of Large Prestressed Concrete Beams Cast with High Strength Concrete and the Effect of Draped Tendon on their Shear Behavior (고강도 대형 프리스트레스트 콘크리트 보의 전단거동과 경사진 프리스트레싱 긴장재의 영향)

  • Kim Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.963-974
    • /
    • 2005
  • This paper presented four shear test results from experimental tests of two large prestressed concrete beams cast with high strength concrete. In particular, this experiment investigated the effects of draped strands on shear behavior of these full-scaled beams. This study indicated that the use of draped strands increased the ultimate shear capacity as well as the web-shear cracking load. The test results also showed that draped strands reduced strand slip at ends of beams, which represented that these strands were effective to relieve the anchorage stresses. The test results were compared to predictions by two major codes; ACI 318-02 Building Code and AASHTO LRFD(2002). The shear design provisions in these codes provided conservative results on the shear strengths of all test specimens with reasonable margins of safety, and these provisions were particularly more conservative for test specimens having draped strands.

Shear performance assessment of steel fiber reinforced-prestressed concrete members

  • Hwang, Jin-Ha;Lee, Deuck Hang;Park, Min Kook;Choi, Seung-Ho;Kim, Kang Su;Pan, Zuanfeng
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.825-846
    • /
    • 2015
  • In this study, shear tests on steel fiber reinforced-prestressed concrete (SFR-PSC) members were conducted with test parameters of the concrete compressive strength, the volume fraction of steel fibers, and the level of effective prestress. The SFR-PSC members showed higher shear strengths and stiffness after diagonal cracking compared to the conventional prestressed concrete (PSC) members without steel fibers. In addition, their shear deformational behavior was measured using the image-based non-contact displacement measurement system, which was then compared to the results of nonlinear finite element analyses (NLFEA). In the NLFEA proposed in this study, a bi-axial tensile behavior model, which can reflect the tensile behavior of the steel fiber-reinforced concrete (SFRC) in a simple manner, was introduced into the smeared crack truss model. The NLFEA model proposed in this study provided a good estimation of shear behavior of the SFRPSC members, such as the stiffness, strengths, and failure modes, reflecting the effect of the key influential factors.

Shear Behavior of Reinforced Concrete Beams Strengthened with Unbonded-Type Wire Rope Units (비 부착형 와이어로프로 보강된 철근콘크리트 보의 전단 거동)

  • Kim, Sun-Young;Byun, Hang-Yong;Sim, Jae-Il;Chung, Heon-Soo;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.83-90
    • /
    • 2007
  • The present study reports a simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units. Fifteen beams failed in shear were repaired and strengthened with wire rope units, and then retested to failure. Influence of the prestressing force, orientation and spacing of wire rope units on the shear behavior of strengthened beams having shear span-to-depth ratios of 1.5, 2.5, or 3.25 were investigated. Test results showed that beams strengthened with wire rope units exhibited a higher shear strength and a larger post-failure deformation than the corresponding original beams. Inclined wire rope units was more effective for shear strength enhancement than vertical wire rope units. The increase of the prestressing force in wire rope units causes the decrease of the principal tensile stress in concrete, as a result, the diagonal tensile cracking strength of strengthened beams was higher than that of the corresponding original beams. Shear capacity of strengthened beams is compared with predictions obtained from ACI 318-05 and EC 2. Shear capacity of strengthened beams having shear span-to-depth ratio below 2.5 is reasonably predicted using ACI 318-05 formula. On the other hand, EC 2 overestimates the shear transfer capacity of wire rope units for beams having shear span-to-depth ratio above 2.5.

An Experimental Study on the Shear Strength of Chemical Anchors Embedded into Non Cracking Plain Concrete (비균열 무근콘크리트에 매입된 케미컬 앵커의 전단내력에 관한 실험적 연구)

  • Seo, Seong-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • The use of post installed anchors with adhesive type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with adhesive type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on adhesive strength of anchors embedded into plain concrete by shear experiments of anchors with variables such as edge distance, anchor interval, and load direction and supplying basic data for enactment of domestic design code.

Experimental Investigation of Out-of-Plane Seismic Resistance of Existing Walls Strengthened with RC Jacketing (RC자켓팅으로 보강된 기존 벽체의 면외방향 내진성능 실험평가)

  • Eom, Tae Sung;Hur, Moo Won;Lee, Sang Hyun;Lee, Bum Sik;Chun, Young Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.239-248
    • /
    • 2019
  • In this study, the out-of-plane seismic resistance of lightly-reinforced existing walls strengthened with thick RC jacket was investigated. The thick RC jacket with a thickness of 500 mm was placed at one side of the thin existing wall with a thickness of 150 mm. At the interface between the wall and RC jacket, a tee-shaped steel section with a number of anchor bolts and dowel bars was used as the shear connector. To investigate the connection performance and strengthening effects, the cyclic loading tests of four jacketed wall specimens were performed. The tests showed that the flexural strength of the jacketed walls under out-of-plane loading was significantly increased. During the initial behavior, the tee shear connector transferred forces successfully at the interface without slip. However, as the cracking, spalling, and crushing of the concrete increased in the exiting walls, the connection performance at the interface was significantly degraded and, consequently, the strength of the jacketed walls was significantly decreased. The flexural strength of the jacketed walls with tee shear connector was estimated considering the full and partial composite actions of the tee shear connector.

Structural Behavior of Reinforced Concrete Frames Strengthened with Infilled Wall Using Concrete Blocks Made in Recycled Aggregates (재생콘크리트 보강블록 끼움벽체로 보강한 철근콘크리트 골조의 구조거동)

  • Kim Sun-Woo;Lee Gab-Won;Park Wan-Shin;Han Byung-Chan;Choi Chang-Sik;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.76-79
    • /
    • 2004
  • The use of recycled aggregate concrete is increasing faster than the development of appropriate design recommendations. This paper is making advances in the recycling of waste concrete material for use as recycled aggregate to make secondary concrete product. Using recycled aggregates from demolished concrete, we manufactured concrete blocks to experiment overall performance in feasible performances. This paper reports limited experimental data on the structural performance of shear wall used concrete blocks made in recycled aggregates. Reinforced concrete frame and shear walls were tested to determine their diagonal cracking and ultimate shear behavior. The variable in the test program was the existence of infilled wall used concrete blocks Made in recycled aggregates. Based on the experimental results, Infilled wall has a high influence on the maximum strength and initial stiffness of reinforced concrete frame. Structural performance of specimen WSB1 and WSB2 is quite different from RCF specimen, particularly strength, stiffness and energy dissipation capacity.

  • PDF

Considerations for Seismic Design of Low-Rise Residential Bearing Wall Buildings with Pilotis (필로티형 저층 내력벽주택의 내진설계 고려사항)

  • Lee, Seung Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • In this study, the results of an analytical investigation on the seismic behavior of two residential 4-story bearing wall buildings with pilotis, each of which has symmetric or unsymmetric wall arrangement at their piloti level, are presented. The dynamic characteristics and lateral resistance of the piloti buildings were investigated through linear elastic and nonlinear static analyses. According to the results, the analytical natural period of vibration of the piloti buildings were significantly shorter than the fundamental period calculated in accordance with KBC 2016. In the initial elastic behavior, the walls resisting in-plane shear contributed to the lateral stiffness and strength, while the contribution of columns resisting flexural moments in double curvature was limited. However, after the shear cracking and yielding of the walls occurred, the columns significantly contributed to the residual strength and ductility. Based on those investigations, design recommendations of low-rise bearing wall buildings with piloti configuration are given.

A Study on Experimental of Two-spans Beam with Steel Fiber According to Repetitive Shear Stress (반복전단응력에 의한 강섬유 2경간 연속보의 실험적 연구)

  • Kwak, Kae-Hwan;Suk, In-Soo;Cho, Sun-Jung;Park, Jong-Gun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.181-184
    • /
    • 2002
  • In this research, a basis test on steel fiber concrete's material property was carried out and optimum design as well as material property was examined. In corroboration of it, the compressive strength was compared with the tensile strength and this paper tried to get the initial load of flexural cracking and the ultimate load in the positive-negative moment section through the static test of beam. The addition rate of the steel fiber, 0.75 SFRC specimen was failed at $65{\sim}75%$ of the static ultimate strength and it could be concluded that fatigue strength to two million cycle was around 75.2%.

  • PDF