• Title/Summary/Keyword: cracking analysis

Search Result 997, Processing Time 0.023 seconds

Effect of Sulfur Contents and Welding Thermal Cycles on Reheat Cracking Susceptibility in Multi-pass Weld Metal of Fe-36%Ni Alloy

  • Mori, Hiroaki;Nishimoto, Kazutoshi
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.377-379
    • /
    • 2005
  • This study has been conducted to clarify the effect of sulfur content and welding thermal cycles on reheat cracking susceptibility in the multi-pass weld metal of Fe-36%Ni alloy. Reheat cracking occurred in the preceding weld pass reheated by subsequent passes. Microscopic observations showed that reheat cracking propagated along grain boundaries which resulted in intergranular brittle fractures. The region where reheat cracking occurred and the number of cracks increased with the increase in sulfur content of the alloys. These experimental results suggested that reheat cracking was associated with the embrittlement of grain boundaries, which was promoted by sulfur and subsequent welding thermal cycles. AES analysis indicated that the sulfur segregation occurred at grain boundaries in the reheated weld metal. On the basis of these results, the cause of reheat cracking in multi-pass welding can be attributed to hot ductility loss of weld metals due to sulfur segregation which was accelerated by the reheating with multi-pass welding thermal cycles.

  • PDF

Finite element analysis of concrete cracking at early age

  • Aurich, Mauren;Filho, Americo Campos;Bittencourt, Tulio Nogueira;Shah, Surendra P.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.459-473
    • /
    • 2011
  • The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.

Effect of Tension Stiffering on the Behavior of Reinforced Concrete Beam (콘크리트 인장강성이 철근콘크리트 보의 거동에 미치는 영향)

  • 이봉학
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.104-112
    • /
    • 1999
  • Tensile behavior in concrete has been neglected until recently. However, the effect of tensile stresses in concrete must be considered where the member primarily carries tensile forces or when ultimate strength is affected by the cracking history. In this paper, a series of experiments were performed with a reinforced rectangular beams of 15 specimens in order to investigate the effect of tension stiffening into the nonlinear analysis and cracking behavior. The experimental results were analyzed in terms of load-deflection curves and strain fracture energy with respect to the main experimental variables such as types of specimen, strength of concrete and steel ration. The results from experiments and finite element analysis were compared in terms of load-deflection relationship and cracking pattern. The results are as follows ; The tension stffening effects of reinforced concrete beams were observedc up to yielding of members after cracking showing strain energy difference of 35 % at the beam of 0.57% steel ratio compared with that of beam ignoring the tension stiffening effect. The tension stiffening of concrete strength 400kgf/$\textrm{cm}^2$ and 600kgf/$\textrm{cm}^2$ increased by 8% and 13%, respectively, compared with that of concrete strength 200kgf/$\textrm{cm}^2$. The tension stiffening effects were greater at a ductile member rather than a brittle one. The load-deflection results of finite element analysis showed very similar results from experiment. The crack growth and pattern might be predicted from the nonlinear finite element analysis considering concrete stiffening.

  • PDF

Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique (EN-DCPD 방법을 이용한 Alloy 600 재료의 국부부식균열 연구)

  • Lee, Yeon-Ju;Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.93-101
    • /
    • 2013
  • The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.

A Study on the Hot Cracking Phenomena of Cu-Ni Bearing Hot Rolled Steels (Cu-Ni 첨가형 열연강판의 열간균열현상에 관한 연구)

  • Yun, In-Taek;Jo, Yeol-Rae;Kim, Sun-Ho;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.335-340
    • /
    • 1999
  • The hot cracking phenomena and phase behaviors during hot working process of Cu-Ni bearing hot rolled steels were investigated by a $90^{\circ}$bending tests, BSE image analysis and EDS analysis. For aNi-free 1.2% Cu bearing steel, the surface hot cracking occurred about $1100^{\circ}C$ due to a liquid state Cu-enriched phase formed continuously at the interface between oxide scale and matrix. The liquid Cu-enriched phase penetrated into austenite grain boundaries and caused surface cracking during the hot working. In case of 0.6% Ni containing 1.2% Cu-Ni bearing steel, solid state Cu-Ni-riched phase existed at the scale/matrix interface as a discontinuous type. But the higher addition of 1.2% Ni, solid state Ni-Cu-riched phase was formed dominantly in the oxide scale. It was found that the addition of Ni suppressed the surface cracking of 1.2% Cu bearing steel by eliminating the liquid state Cu-enriched phase.

  • PDF

Assessment of computational performance for a vector parallel implementation: 3D probabilistic model discrete cracking in concrete

  • Paz, Carmen N.M.;Alves, Jose L.D.;Ebecken, Nelson F.F.
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.345-366
    • /
    • 2005
  • This work presents an assessment of the computational performance of a vector-parallel implementation of probabilistic model for concrete cracking in 3D. This paper shows the continuing efforts towards code optimization as reported in earlier works Paz, et al. (2002a,b and 2003). The probabilistic crack approach is based on the direct Monte Carlo method. Cracking is accounted by means of 3D interface elements. This approach considers that all nonlinearities are restricted to interface elements modeling cracks. The heterogeneity governs the overall cracking behavior and related size effects on concrete fracture. Computational kernels in the implementation are the inexact Newton iterative driver to solve the non-linear problem and a preconditioned conjugate gradient (PCG) driver to solve linearized equations, using an element by element (EBE) strategy to compute matrix-vector products. In particular the paper analyzes code behavior using OpenMP directives in parallel vector processors (PVP), such as the CRAY SV1 and CRAY T94. The impact of the memory architecture on code performance, and also some strategies devised to circumvent this issue are addressed by numerical experiment.

Analysis of Damage Mechanism for Optimum Design in Discontinuously-Reinforced Composites (불균질입자강화 복합재료의 최적설계를 위한 손상메커니즘 해석)

  • 조영태;조의일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.106-112
    • /
    • 2004
  • In particle or short-fiber reinforced composites, cracking or debonding of the reinforcements cause a significant damage mode because the damaged reinforcements lose load carrying capacity. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of discontinuously-reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

Application of the Electrochemical Noise Method with Three Electrodes to Monitor Corrosion and Environmental Cracking in Chemical Plants

  • Ohtsu, Takao;Miyazawa, Masazumi;Ebara, Ryuicluro
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Recently an electrochemical noise method (ENM) with three electrodes has gained attention as a corrosion monitoring system in chemical plants. So far a few studies have been carried out for localized corrosion and environmental cracking of chemical plant materials. In this paper the ENM system is briefly summarized. Then an application of ENM to general corrosion for chemical plant materials is described. The emphasis is focused upon the analysis of stress on the corrosion cracking process of austenitic stainless steel in 30% $MgCl_2$ aqueous solution and the corrosion fatigue crack initiation process of 12 Cr stainless steel in 3% NaCl aqueous solution by ENM. Finally future problems for ENM to monitor regarding corrosion and environmental cracking in chemical plants are discussed.

Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function (다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열해석)

  • 곽효경;송종영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.267-274
    • /
    • 2001
  • In this paper, a analytical model which can simulate the post-cracking behavior and tension stiffening effect in a reinforced concrete(RC) tension member is proposed. Unlike the classical approaches using the bond stress-slip relationship or the assumed bond stress distribution, the tension stiffening effect at post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete, and its contribution is implemented into the reinforcing steel. The introduced model can be effectively used in constructing the stress-strain curve of concrete at post-cracking stage, and the loads carried by concrete and by reinforcing steel along the member axis can be directly evaluated on the basis of the introduced model. In advance, the prediction of cracking loads and elongations of reinforced steel using the introduced model shows good agreements with results from previous analytical studies and experimental data.

  • PDF

Reduction of Drying Shrinkage Cracking of Box Culvert for Power Transmission with Shrinkage Reducing Agent (수축저감제 혼입에 따른 전력구 박스구조물의 건조수축균열 저감)

  • Woo, Sang-Kyun;Kim, Ki-Jung;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.102-108
    • /
    • 2016
  • The purpose of this study is to examine the reduction effect of shrinkage reducing agent for drying shrinkage induced cracking and suggest the method of controlling the cracking in concrete box culvert for power transmission. Based on drying shrinkage cracking mechanism, it is necessary to perform the numerical analysis, which involves shrinkage reducing effect of shrinkage reducing agent. From the numerical results, it is found that cracking behavior for longitudinal direction and transverse direction due to differential drying shrinkage of box culvert can occur and the experimental observation of concrete cracks support the numerical predictions. The shrinkage reducing agent reduced the concrete cracking by 40~50%, which shows the methodology of controlling of drying shrinkage cracks in box culverts in real construction site.