• Title/Summary/Keyword: crack-width

Search Result 643, Processing Time 0.036 seconds

Effect of Specimen Size on Fatigue crack Growth Rate in Steels (강재의 피로균열전파율에 미치는 시험편 크기의 영향)

  • 안석화
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • This paper describes the effect of specimen size on fatigue crack growth rate for the offshore structural high-tensile-strength steel BS4360 and machine structural steel SM45C. The purpose of the present study is to investigate the effect of stress ratio aspect ratio specimen width and specimen thickness of the fatigue crack growth behavior. Compact tension specimens with a LT orientation for BS4360 and SM45C steels were used, All testing was done at constant stress intensity factor range controlled fatigue crack growth condition. The investigation demonstrates that the fatigue crack growth rate is increased with increasing stress ratio and specimen thickness and is decreased with increasing specimen width. The fatigue crack growth rate is unaffected by aspect ratio until a/W=0.50 but is increased by increasing spect ratio from a/W=0.55.

  • PDF

Correlation between Crack Width and Water Flow of Cracked Mortar Specimens Measured by Constant Water Head Permeability Test (정수위 투수시험에 의해 측정된 균열 모르타르 시편의 유출수량과 균열폭의 상관관계)

  • Choi, Seul-Woo;Bae, Won-Ho;Lee, Kwang-Myong;Shin, Kyung-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.267-273
    • /
    • 2017
  • Recently, the researches of self-healing concrete technology are being carried out actively due to the advent of importance for the maintenance of concrete structures. A water permeability test has been widely used for the evaluation of self-healing performance. However, it is difficult to compare tests results since there is no standard test method related to the self-healing. A standard method for measuring the crack width does not exist neither though the self-healing performance is significantly influenced by the initial crack width. In this study, the effect of water head and crack width on water flow was investigated using a constant water head permeability test equipment. The correlation equation between the initial crack width and water flow was suggested through the regression analysis of test data, and the predicted crack widths agree well with the real crack widths measured using microscopy.

Relationship between Crack Width and Gas Diffusion Coefficient of Cracked Acrylic Specimens (균열 아크릴 시편의 기체 확산계수와 균열폭의 관계)

  • Lee, Do-Keun;Lim, Min-Hyuk;Shin, Kyung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • Recently, as the importance of structural maintenance has been increased, studies on self - healing concrete technology are being actively carried out. On the other hand, test for evaluating the self-healing performance is not standardized yet. Although visual test is used as a basic method for measuring crack widths, it is difficult to observe the crack width inside the specimen, and there is a disadvantage that only the local measurement of the surface can be measured due to the inhomogeneous cracking characteristics. Although permeability test has been widely used as an indirect method for measuring crack width, there is a problem due to the viscosity of water, and also a possibility that the internal material of the specimen may be eluted during the test. In this study, we propose a crack width evaluation method using gas diffusion characteristics. Idealized straight cracks were fabricated by acrylic and the diffusion coefficients of specimens were analyzed with respect to crack width and thickness. The experimental results show that the crack width and the diffusion coefficient are in a linear relationship and that the thickness and diffusion coefficient are inversely related.

Calculation of Crack Width in SFRC Structures (강섬유보강 철근콘크리트구조물에 있어서의 균열폭 계산)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.579-584
    • /
    • 2001
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit states. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.

  • PDF

Calculation of Crack Width in SFRC Structures (강섬유철근콘크리트 구조물의 균열폭 계산)

  • Kang Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.293-298
    • /
    • 2005
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of sleet fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit stales. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.

Assessment of Flexural Crack Width and Crack Spacing of Reinforced Concrete Beams (RC보의 휨 균열폭 및 균열간격에 관한 실험 및 이론 연구)

  • 오병환;김세훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.105-108
    • /
    • 2000
  • With exact analysis of cracks in RC beam, present or past stress states can be traced. For analysis of Flexural cracks, experiments are carried out focusing on variation of crack widths and crack spacing due to stress, beam properties. The crack width expectation formulas of each code are compared and initial crack spacing expectation formula is proposed.

  • PDF

Permeability of Cracked Concrete as a Function of Hydraulic Pressure and Crack Width (수압과 균열폭 변화에 따른 콘크리트 투수계수의 실험적 연구)

  • Hyun, Tae-Yang;Kim, Chin-Yong;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.291-298
    • /
    • 2008
  • Cracks in concrete generally interconnect flow paths and increase concrete permeability. The increase in concrete permeability due to the progression of cracks allows more water or aggressive chemical ions to penetrate into concrete, facilitating deterioration. The goal of this research is to study the relationship between crack width and water permeability of cracked concrete. Tests have been carried out as a function of hydraulic pressure (0.1 $\sim$ 2 bar) and crack width (30 $\sim$ 100 ${\mu}m$). Splitting and reuniting method was used to manufacture cracked concrete specimens with controlled crack width. Crack widths are checked by using a microscope($\times$100). The results show a considerable increase of water transport with crack width and hydraulic pressure. When the crack width is smaller than 50${\mu}m$, the crack width has little effect on concrete permeability. Due to the autogenous healing, the water flow through the crack gradually reduces with time. When crack width is 100 ${\mu}m$ and hydraulic pressure increase from 0.1 bar to 0.25 bar, concrete permeability increases rapidly about 190 times according to the test results.

Semi-Empirical Prediction of Crack Width of the Strengthened Bridge Deck with External Bonding Plastic (외부부착 보강된 교량 바닥판 균열폭의 반경험적인 예측)

  • 심종성;오홍섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.231-238
    • /
    • 2002
  • Dry shrinkage md temperature change cause to develope concrete bridge decks on main girders have initial unidirectional cracks in longitudinal or transverse direction. As they receive traffic loads, the crack gradually propagate in different directions depending on the concrete dimension and reinforcement ratio. Since existing equations that predict crack width are mostly based on the one directional bond-slip theory, it is difficult to determine the actual crack width of a bridge deck with varying the spacing of rebar or strengthening material and to estimate the improvement rate in serviceability of the strengthened bridge deck. In this study, crack propagation mechanism is identified based on the test results and a new crack prediction equation is proposed for evaluation of serviceability. Although more accurate results are derived using the proposed equation, the extent of error is increased as the strain of the rebar or the strengthening material increases after the yielding of rebar Therefore, further research is required to better predict the crack width after the rebar yields under fatigue loading condition.

Evaluation Method of Healing Performance of Self-Healing Materials Based on Equivalent Crack Width (등가균열폭에 기반한 자기치유 재료의 치유성능 평가 방법)

  • Lee, Woong-Jong;Kim, Hyung-Suk;Choi, Sung;Park, Byung-Sun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.383-388
    • /
    • 2021
  • In this study, constant head water permeability test was adopted to evaluate self-healing performance of mortars containing inorganic healing materials which consist of blast furnace slag, sodium sulfate and anhydrite. Clinker powder and sand replaced for a part of cement and fine aggregates. On constant head water permeability test for self-healing mortars, unit water flow rate of mortar specimens were measured according to crack width and healing period. As a result of evaluating the healing performance of self-healing mortar, it was confirmed that with the initial crack width of 0.3mm, the healing rate at healing period of 28 days increased by more than 30%p compared to plain mortar, greatly improving the healing performance. Furthermore, the coefficient(α) which was estimated from the relationship between crack width and unit water flow rate was used for calculating equivalent crack width. By analyzing the correlation of healing rate and equivalent crack width, the time and initial crack width attaining healing target crack width were predicted.

ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP (부착응력-상대슬립을 이용한 휨균열폭 산정)

  • 고원준;김진호;서봉원;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF