• Title/Summary/Keyword: crack-width

Search Result 646, Processing Time 0.035 seconds

Effective width of steel-concrete composite beams under negative moments in service stages

  • Zhu, Li;Ma, Qi;Yan, Wu-Tong;Han, Bing;Liu, Wei
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.415-430
    • /
    • 2021
  • The effective flange width was usually introduced into elementary beam theory to consider the shear lag effect in steel-concrete composite beams. Previous studies have primarily focused on the effective width under positive moments and elastic loading, whereas it is still not clear for negative moment cases in the normal service stages. To account for this problem, this paper proposed simplified formulas for the effective flange width and reinforcement stress of composite beams under negative moments in service stages. First, a 10-degree-of-freedom (DOF) fiber beam element considering the shear lag effect and interfacial slip effect was proposed, and a computational procedure was developed in the OpenSees software. The accuracy and applicability of the proposed model were verified through comparisons with experimental results. Second, a method was proposed for determining the effective width of composite beams under negative moments based on reinforcement stress. Employing the proposed model, the simplified formulas were proposed via numerical fitting for cases under uniform loading and centralized loading at the mid-span. Finally, based on the proposed formulas, a simplified calculation method for the reinforcement stress in service stages was established. Comparisons were made between the proposed formulas and design code. The results showed that the design code method greatly underestimated the contribution of concrete under negative moments, leading to notable overestimations in the reinforcement stress and crack width.

Study on damage law and width optimization design of coal pillar with the discrete element method

  • Chuanwei Zang;Bingzheng Jiang;Xiaoshan Wang;Hao Wang;Jia Zhou;Miao Chen;Yu Cong
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.555-563
    • /
    • 2024
  • The reasonable setting of coal pillar width plays a key role in guaranteeing the steadiness of surrounding rock of fully mechanized caving gateroad driving along the next goaf. Based on the engineering background of the Bayangaole mine, the discrete element method was used to simulate the fracture evolution of coal pillars with different pillar widths. The results show that the damage rate of the coal pillar increases with the decrease in the width of the coal pillar. Once the coal pillar width is smaller than 6 m, cracks run through the coal pillar, and the coal pillar is completely damaged. In the middle of the coal pillar, which has a width of 6 m and above, there is a relatively complete area with low damage. The results show that the pillar width of 6 m is the most appropriate. Field tests prove that the reserved width of a 6 m small coal pillar can effectively control the surrounding rock deformation, ensuring the overall steadiness of the gateroad in the thick coal seam. It is hoped that this study will offer some reference for the determination of the reasonable size of the coal pillar.

Assessment of Fracture Behaviors for CIP Anchors Fastened to Cracked and Uncracked Concretes

  • Yoon, Young-Soo;Kim, Ho-Seop;Kim, Sang-Yun
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.33-41
    • /
    • 2001
  • This paper presents the crack effect on CIP anchors and prediction of tensile capacity, as governed by concrete cone failure. Single anchors where located at center of concrete specimen. Three different types of cracks such as crack width of 0.2 mm and 0.5 mm, crack depth of 10 cm and 20cm , and crack location of center and off-center point were simulated. Static tensile load was applied to 7/8-in. CIP anchors of 10 cm and 20 cm embedment length in concrete with compressive strength of 280 kgf/$\textrm{cm}^2$. Tested pullout capacities were compared to the values determined using current design methods (such as ACI 349-97, ACI 349 revision and CEB-FIP which is based on CCD Method). The comparison of CCD Method and ACI revision showed almost the same values in uncracked concrete specimen. In cracked concrete, CCD Method predicted conservative values. Three-dimensional non-linear FEM modeling also has been performed to determine the stresses distribution and crack inclination.

  • PDF

The Effects of Sepiolite on the Properties of Portland Cement Mortar (해포석이 시멘트 경화체의 특성에 미치는 영향)

  • Kang, Hyun-Ju;Song, Myong-Shin;Kim, Young-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.443-452
    • /
    • 2008
  • Shrinkage crack is a major concern for cement materials, especially for flat structures such as Korean On-Dol floor system, flooring for garages, and wall. One of the methods to reduce the adverse effects of shrinkage cracking is to reinforce cement materials with shot randomly distributed fibers. The efficiency of inorganic fibrous material to arresting cracks in cementitious composites was studied. Cement materials reinforced with five different qualities of inorganic fibrous material were tested. Contents of inorganic fibrous material were 1.0 kg, 1.5 kg, 2.0 kg, 2.5 kg, 3.0 kg by weight of cement mortar and C : S types of cement mortar were 1:3 and 1:4. W/C were 60% and 80%. Cement mortar of inorganic fibrous material reinforcement showed an ability to reduce the crack width and crack length significantly as compared to unreinforced cement mortar. $40%{\sim}60%$ drop in shrinkage crack of 1:4 cement mortar with 1.5 kg over was observed.

The Fatigue Behavior of Tailored Welded Blank Sheet Metal by Laser Beam (레이저를 이용한 Tailored Blank 용접 판재의 피로거동)

  • 오택열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.48-55
    • /
    • 2000
  • For the Tailor Welded Blank sheet used for automobile body panel, the characteristics of fatigue strength and crack propagation behavior were studied. The thickness of specimens was joined to be same (0.9mm+0.9mm) and different (0.9mm+2.0mm) .As a base test, mechanical properties around weld zone were examined . The results indicated that there were no significant decreases in mechanical properties , but hardness around weld bead was 2.3 times greater than base material . The fatigue strength was the highest when the loading direction was parallel to the welding direction, which was about 85% of tensile strength of base material. It was decreased by 8.5% when the thickness of specimens and base metal was different, and it was increased by 25% when pres-strain was applied. The crack propagation rate was noticeably decreased around weld line and rapidly increased as it passed through weld line. Reviewing the shape of the crack propagation , crack width around weld line was around the weld zone due to retardation of crack growth , but is became narrow passing weld line due to decreased toughness.

  • PDF

The Extacting Crack in Asphalt Concrete Pavement by Digital Image Processing (수치영상처리에 의한 아스팔트 포장노면의 균열 검출)

  • Jang, Ji-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.77-84
    • /
    • 2002
  • Recently, damage of pavement represented by crack is depened by the increase of traffic demand up to ten million and wight, and interest about the efficient management of pavement is being increased gradually according to the growth of maintenance expense of road surface. In this study, the possibility of application for acquisition of crack information was tested by appling DCRP and digital image processing technique and measuring crack on road surface precisely. Based on this, objective and efficient road surface measurement was planned and done. Measuring crack width, acquire result of comparative high accuracy. So, it is considered that it can be utilized as plan draft data for deterioration estimation and repair reinforcement work of pavement.

  • PDF

A Study on Crack Self-Healing of Concrete Overlay for Bridge Decks (콘크리트 교면포장의 자기균열치유 특성에 대한 검토 연구)

  • Jeon, Sung IL;Yun, Kyung Ku;An, Ji Hwan;Choi, Pan Gil
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • PURPOSES : The purpose of this study is to verify the property of self-healing, and to propose an appropriate duration for wet curing of bridge deck concrete overlays. METHODS : In this study, reinforced bars were inserted into concrete molds in order to prevent brittle fracture and induced cracks in the concrete resulting from indirect tension mode. The induced time of concrete cracking was 3 to 7 days, following which the concrete specimens were cured in water. The resulting concrete crack width was measured using image analysis equipment. Additionally, the self-healing tests were performed using the following three mixtures: OPC, SFC, and LMC. RESULTS : Concrete mixtures with crack widths of $150{\mu}m$ or lower were completely healed by Day 28. Hydrates of crack fills were found to be the calcium carbonate. CONCLUSIONS : The cement-based mixtures exhibit properties of self-healing. Considering these properties, it is necessary to increase the curing duration of concrete overlays for bridge decks.

A Study for Mutual Interference between Symmetric Circular Inclusion and Crack in Finite Width Plate by Boundary Element Method (경계요소법에 의한 유한폭 판재내의 대칭 원형함유물과 균열의 상호간섭에 대한 연구)

  • Park, S.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.137-145
    • /
    • 1997
  • A two-dimensional program for the analysis of bimaterial inclusion has been developed using the bound- ary element method. In order to study the effects of circular inclusion on the stress field of the crack tip, numerical analysis was performed for the straight crack of finite length around the symmetric circular inclusion whose modulus of elasticity was different from that of the matrix material. In the case of inclusion whose stiffness was smaller than that of the matrix material, the stress intensity factor was found to increase as the crack enamated. The stress intensity factor was uninfluenced from the radial change in inclusion and remained constant for the stiffness equivalent to the matrix materials, where as it decreased for the inclusion with larger stiffness. For the vareation in the distance of the inclusion, a small increase in the stress intensity factor was observed for the case with small or equal stiffness compared with the matrix materials. The inclusion with larger stiffness showed a gradual decrease in the strss intensity factor as the crack emanated.

  • PDF

The Fatigue Behavior of Laser Welded Sheet Metal (레이저 용접 판재의 피로거동)

  • 오택열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.339-344
    • /
    • 1999
  • For the Tailor Welded Blank sheet used for automobile body panel, the characteristics of fatigue strength and crack propagation behavior were studied. The thickness of specimen was machined to be same (0.9mm+0.9mm) and different (0.9mm+2.0mm). As a base test, mechanical properties around welding zone were examined. The results indicated that there were no significant decreases in mechanical properties, but hardness around welding bead is 2.3 times greater than base material. The fatigue strength was the highest when the loading direction was parallel to the welding direction, which was about 85% of tensile strength of base material. It was decreased by 8.5% when the thickness of specimen and base material was different, and it is increased by 25% when pre-strain was applied. The crack propagation rate was noticeable decreased around welding line and rapidly increased as it passed by welding line. Reviewing the shape of the crack propagation, crack width around welding line was wide around the welding zone due to retardation of crack growth, but it became narrow passing welding line due to decreased toughness.

  • PDF

A study on the pure Al weldability using a pulsed Nd : YAG laser (펄스형 Nd:YAG 레이저를 이용한 Al의 용접 특성연구)

  • 김덕현
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.52-61
    • /
    • 1993
  • Laser welding of ASTM no. 1060 Al plate with a pulsed Nd: YAG laser of 200W average power was performed for end capping of KMRR nuclear fuel elements In this research, we performed basic welding experiments. Firstly, laser output parameters which affect laser welding parameters were studied by changing laser input parameters for effective welding of 1060 Al plates. We found that laser power density and pulse energy are important parameters for smooth bead shape. Secondly, welding parameters which affect weld width-to-depth ratio were studied by changing power density and pulse energy, shielding gas, and defocusing. We found that power density must be higher than 0.3 Mw/cm$^{2}$ pulse energy must be higer than 3 J. travel speed must not exceed 200mm/sec, laser focus must be existed beneath 2-3mm from plate surface and helium is proper shielding gas. Thirdly, we studied the weld defects of Al-1060 such as crack and porosity in lap-joint welding. We designed new welding geometry for crack free welding of Al-1060 plates, and obtained crack free weldment but with lack of fusion. However, with Ti, Zr grain refiner elements, we can weld Al plates without solidification hot crack. Finally, we studied the origin of porosity by changing shielding gas. And we found that porosity was resulted from entrapment of shielding gas by the collapsing keyhole.

  • PDF