DOI QR코드

DOI QR Code

Study on damage law and width optimization design of coal pillar with the discrete element method

  • Chuanwei Zang (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Bingzheng Jiang (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Xiaoshan Wang (School of Science, Qingdao University of Technology) ;
  • Hao Wang (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Jia Zhou (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Miao Chen (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Yu Cong (School of Science, Qingdao University of Technology)
  • Received : 2022.09.14
  • Accepted : 2024.05.14
  • Published : 2024.06.25

Abstract

The reasonable setting of coal pillar width plays a key role in guaranteeing the steadiness of surrounding rock of fully mechanized caving gateroad driving along the next goaf. Based on the engineering background of the Bayangaole mine, the discrete element method was used to simulate the fracture evolution of coal pillars with different pillar widths. The results show that the damage rate of the coal pillar increases with the decrease in the width of the coal pillar. Once the coal pillar width is smaller than 6 m, cracks run through the coal pillar, and the coal pillar is completely damaged. In the middle of the coal pillar, which has a width of 6 m and above, there is a relatively complete area with low damage. The results show that the pillar width of 6 m is the most appropriate. Field tests prove that the reserved width of a 6 m small coal pillar can effectively control the surrounding rock deformation, ensuring the overall steadiness of the gateroad in the thick coal seam. It is hoped that this study will offer some reference for the determination of the reasonable size of the coal pillar.

Keywords

Acknowledgement

The research was supported by the National Natural Science Foundation of China (52374128, 42207201, 52004145) and the Natural Science Foundation of Shandong Province(ZR2020QE119).

References

  1. Chen, M., Yang, S.Q., Zhang, Y.C. and Zang, C.W. (2016), "Analysis of the failure mechanism and support technology for the Dongtan deep coal roadway", Geomech. Eng., 11(3), 401-420. https://doi.org/10.12989/gae.2016.11.3.401.
  2. Chen, M., Zang, C.W., Ding, Z.W., Zhou, G.L., Jiang, B.Y., Zhang, G.C. and Zhang, C.P. (2022), "Effects of confining pressure on deformation failure behavior of jointed rock", J. Central South Univ., 29(4), 1305-1319. https://doi.org/10.1007/s11771-022-4991-z.
  3. Chen, M., Zhang, Y.L., Zhang, G.C., Zhou, G.L. and Wang, Z.H. (2023), "Discrete element study on mechanical response and pressure relief effect of rock containing variable hole", Theor. Appl. Fract. Mech., 127, 103976. https://doi.org/10.1016/j.tafmec.2023.103976.
  4. Coulthard, M.A. (1999), "Applications of numerical modelling in underground mining and construction", Geotech. Geol. Eng., 17, 373-385. https://doi.org/10.1023/A:1008951216602.
  5. Gao, F.Q. (2013), "Simulation of failure mechanisms around under-ground coal mine openings using discrete element modelling", PhD thesis. Simon Fraster University, Burnaby.
  6. Gao, F.Q. and Stead, D. (2014), "The applicationofa modified Voronoi logicto brittle fracture modelling at the laboratory and fieldscale", Int. J. Rock Mech. Min. Sci., 68, 1-14. https://doi.org/10.1016/j.ijrmms.2014.02.003.
  7. He, W., He, F. and Zhao, Y. (2019), "Field and simulation study of the rational coal pillar width in extra-thick coal seams", Energ. Sci. Eng., 8(1).
  8. He, W.R., He, F.L., Chen, D.D. and Chen, Q.K. (2020), "Coal pillar width and surrounding rock control of roadway driving along goaf in fully mechanized top coal caving face", J. Min. Saf. Eng., 37(2), 349.
  9. Hill, D. (2005), "Coal pillar design criteria for surface protection", Proceedings of the coal conference.
  10. Jaiswal, A. and Shrivastva, B.K. (2009), "Numerical simulation of coal pillar strength", Int. J. Rock Mech. Min. Sci., 46(4), 779-788. https://doi.org/10.1016/j.ijrmms.2008.11.003.
  11. Lisjak, A. and Grasselli, G. (2014), "A review of discrete modeling techniques for fracturing processes in discontinuous rock masses", J. Rock Mech. Geotech. Eng., 6(4), 301-314. https://doi.org/10.1016/j.jrmge.2013.12.007.
  12. Lorig, L.J. and Cundall, P.A. (1989), "Modeling of reinforced concrete using the distinct element method", Springer New York.
  13. Mathey, M. and Merwe, J.N.V.D. (2016), "Critique of the South African squat coal pillar strength formula", J. South Afr. Inst. Min. Metall., 116(3), 291-299. https://doi.org/10.17159/2411-9717/2016/v116n3a11.
  14. Poulsen, B.A., Shen, B., Williams, D.J., Huddlestone-Holmes, C., Erarslan, N. and Qin, J. (2014), "Strength reduction on saturation of coal and coal measures rocks with implications for coal pillar strength", Int. J. Rock Mech. Min. Sci., 71, 41-52. https://doi.org/10.1016/j.ijrmms.2014.06.012.
  15. Salamon, M.D.G. (1970), "Stability instability and design of pillar workings", Int. J. Rock Mech. Min. Sci. Geomech., 7(6), 613-631. https://doi.org/10.1016/0148-9062(70)90022-7.
  16. Salamon, M.D.G. and Munro, A.H. (1967), "A Study of the strength of coal pillars", J. South. Afr. Inst. Min. Metall., 68(2), 55-67. https://hdl.handle.net/10520/AJA0038223X_3918. 10520/AJA0038223X_3918
  17. Singh, M. and Seshagiri, R.K. (2005), "Empirical methods to estimate the strength of jointed rock masses", Eng. Geol., 77(1-2), 127-137. https://doi.org/10.1016/j.enggeo.2004.09.001.
  18. Wu, S.K., Zhang, J.W., Song, Z.X., Fan, W.B., Zhang, Y., Dong, X.K. and Ma, S.J. (2023a), "Review of the development status of rock burst disaster prevention system in China", J. Central South Univ., 30(11), 3763-3789. https://doi.org/10.1007/s11771-023-5478-2.
  19. Wu, W.X. and Gong, F.Q. (2023b), "Dynamic tensile strength weakening effect of pretension stressed red sandstone under impact load", J. Central South Univ., 30(10), 3349-3360. https://doi.org/10.1007/s11771-023-5420-7.
  20. Xie, H.P., Zhou, H.W., Xue, D.J., Wang, H.W., Zhang, R. and Gao, F. (2012), "Research and thinking on deep mining and limit mining depth of coal", J. China Coal Soc., 37(4), 535-542.
  21. Yang, H.R., Ning, S.Z., Ding, L. and Liu, Z. (2021), "Research on the current situation and countermeasures of my country's coal industry in the new era", China Coal Geol., 33(1), 44.
  22. Yang, S.Q., Chen, M., Jing, H.W., Chen, K.F. and Meng, B. (2017), "A case study on large deformation failure mechanism of deep soft rock roadway in Xin'An coal mine, China", Eng. Geol., 217, 89-101. https://doi.org/10.1016/j.enggeo.2016.12.012.
  23. Zang, C.W., Chen, M., Zhang, G.C., Wang, K. and Gu, D.D. (2020), "Research on the failure process and stability control technology in a deep roadway: Numerical simulation and field test", Energ. Sci. Eng., 8, 1-14. https://doi.org/10.1002/ese3.664.
  24. Zang, C.W., Zhou, J., Chen, M., Bai, F. and Zhao, Z.Y. (2023), "Study on the instability mechanism of coal and rock mining under a residual coal pillar in gently inclined short-distance coal seam with the discrete element", Sustainability, 15(7), 6294. https://doi.org/10.3390/su15076294.
  25. Zhang, G.C., He, F.L., Jia, H.G. and Lai, Y.H. (2017), "Analysis of gateroad stability in relation to yield pillar size: A case study", Rock Mech. Rock Eng., 50(5), 1263-1278. https://doi.org/10.1007/s00603-016-1155-1.
  26. Zhang, G.C., Li, Y., Meng, X.J., Tao, G.Z., Wang, L., Gao, H., Zhu, C., Zou, H. and Qu, Z. (2022), "Distribution law of in situ stress and its engineering application in rock burst control in Juye mining area", Energies, 15(4), 1267. https://doi.org/10.3390/en15041267.
  27. Zhang, L. and Einstein, H.H. (2004), "Using RQD to estimate the deformation modulus of rock masses", Int. J. Rock Mech. Min. Sci., 41(2), 337-341. https://doi.org/10.1016/S1365-1609(03)00100-X.
  28. Zhang, Y.C., Yang, S.Q., Chen, M and Zang, C.W. (2017), "Deformation and failure mechanism and control technology of solid coal slope of roadway driving along goaf in fully mechanized top coal caving in deep mine", Rock Soil Mech., 38(4), 1103.
  29. Zhao, Y.X., Zhou, J.L. and Liu, W.G. (2020), "Analysis of loading characteristics and impact instability law of deep mining adjacent goaf roadway in Xinjie mining area", J. China Coal Soc., 0545(5), 1595-1606.