• Title/Summary/Keyword: crack separation

Search Result 99, Processing Time 0.026 seconds

Analytical Study on Interface Debonding of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet(CFS) (탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리에 대한 해석적 연구)

  • Sim, Jong-Sung;Bae, In-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 1999
  • The purpose of this study is to analyze the interface debonding of RC beams strengthened by carbon fiber sheet(CFS). The behavior of damaged RC beams strengthened with CFS is analytically investigated next using linear elastic fracture mechanics(LEFM) approach and the finite element method. The study includes an investigation of the separation mode by interface fracture of the strengthening materials due to the interfacial shear and normal stresses. The numerical method is presented to obtain the value of interfacial fracture parameter such as the strain energy release rate. Based on the results of this study, it is found that the critical case occurs when the interfacial cracks occur within a short region of the flexural crack. The CFS strengthening has not an adequate factor of safety against interfacial debonding of CFS. Furthermore, for the thicknesses of the adhesive studied[1mm~3mm], it is no noticeable effect on the strain energy release rate.

Mechanical Properties and Failure Analysis of $Al_2O_3/ZrO_2$ Composites ($Al_2O_3/ZrO_2$복합체의 기계적 물성 및 파괴거동)

  • Hong, Gigon-Hong;Han, Dong-Bin
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.172-179
    • /
    • 1992
  • $Al_2O_3/ZrO_2$ composites were fabricated by pressureless sintering from commercial powders and/or nano composite powder of $Al_2O_3/ZrO_2$. The Properties of the composites such as density, strength, hardness and fracture toughness were evaluated. Microstructures and fracture surfaces ware also examined. The flexural strength remains unchanged(~640 MPa) as long as the content of commercial powders is not extreamly high, and depends on microstructures of the composites. Fracture toughness(4.3-5.3 $Mpa{\cdot}m^{1/2}$) increases with increasing content of commercial powders. Fractography shows that failure-initiating sources are 1)surface flaws resulting from machining damage, 2)crack-shaped voids formed due to $ZrO_2$ agglomeration, and 3)surface separation caused by inhomogeneous blending and by sinterability difference between nato composite powder and commercial powders of $Al_2O_3/ZrO_2$. Failure mode of the composites was mainly transgranular.

  • PDF

FRACTURE STRENGTH OF COMPOSITE RESIN WITH VARIOUS FIBER REINFORCING MATERIALS (수종의 섬유보강재가 복합레진의 파절강도에 미치는 영향)

  • Park, Ji-Man;Cho, Yong-Bum;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.371-380
    • /
    • 2000
  • The effect of fiber reinforcing materials on the fracture strength of composite resin was evaluated. Each ten composite resin bars reinforced by glassfiber[Fiber-Splint ML$^{(R)}$(Polydentia SA, Switzerland)], polyethylene fiber [Ribbond$^{(R)}$(Ribbond Inc., U.S.A.)] and polyaramid fiber[Kevlar$^{(R)}$(DuPont, U.S.A.)] were loaded under the 3-point compression technique. Another ten pure composite resin bars without reinforcement were used as a control group. Then mean fracture strength and standard deviation were calculated and a ANOVA and Scheffe test were used in statistics. The results were as follows: 1. Kevlar group showed the highest fracture strength as 175.5MPa (p<0.05). Fiber-Splint ML group showed the lowest fracture strength as 112.7MPa. 2. The mean value of fracture strength in Ribbond group was 136.4MPa, and that of unterated control group was 143.6MPa. No difference was found between the two groups. 3. Ribbond and Kevlar reinforcement groups showed a catastrophic failure, where complete separation of pieces occurs to a unseparated fracture pattern. The use of Kevlar reinforcement fibers with composite resin showed significant increase in the average load failure and the presence of the fibers did prevent the catastrophic crack propagation present in the unreinforced samples. The use of Ribbond reinforcement fibers with composite resin showed no significant increase in the average load failure. However, the presence of the fibers did prevent the catastrophic crack propagation. Because high strength of glassfiber are rapidly degraded on exposure to moisture and humidity. The use of Fiber-Splint ML reinforcement fibers with composite resin showed significant decrease in the average load failure and displayed catastrophic fractures.

  • PDF

Fabrication and Stability of Pd Coated Ta/YSZ Cermet Membrane for Hydrogen Separation (Pd 코팅된 Ta/YSZ 수소분리막의 제조 및 안정성)

  • Lee, Sang-Jin;Jeon, Sung-Il;Park, Jung-Hoon
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2010
  • Cermet membrane was fabricated with tantalum as hydrogen-permeable metal and $Y_2O_3$-stabilized $ZrO_2$ (YSZ) as ceramic supporter. Ta/YSZ cermet membrane was prepared through pre-sintering in He atmosphere and then main sintering under high vacuum and the impurities to originate from sintering and brazing could be removed by mechanical polishing. As-prepared membrane showed dense structure with continuous channel of tantalum. Hydrogen permeation experiment was conducted in the region of $200{\sim}350^{\circ}C$ using Ta/YSZ membrane coated with Pd for hydrogen dissociation. The crack in membrane was formed at $300^{\circ}C$ and the Pd coating layer has flaked off in spots. XRD results showed that tantalum reacted with hydrogen to form $Ta_2H$. The lattice expansion by $Ta_2H$ caused deterioration for membrane.

Fabrication of Pd/YSZ Cermet Membrane for Hydrogen Separation (수소 분리를 위한 Pd/YSZ Cermet 분리막의 제조)

  • Jeon, Sung-Il;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.148-154
    • /
    • 2011
  • Metal-ceramic composite membrane have been developed to separate hydrogen from mixed gases, particularly product streams generated during coal gasification and methane reforming. Cermet membrane was fabricated with palladium as hydrogen-permeable metal and $Y_2O_3$-stabilized $ZrO_2$ (YSZ) as ceramic supporter. As-prepared membrane showed dense structure with continuous channel of palladium. The hydrogen flux of Pd/YSZ membrane have been measured in the range of 0.5~2 atm with 100% hydrogen gas. The results indicate that the hydrogen flux was 0.333 mL/$min{\cdot}cm^2$ at $450^{\circ}C$ and 2 atm. The crack was formed in the surface and cross-section of membrane.

Parallel Computing Strategies for High-Speed Impact into Ceramic/Metal Plates (세라믹/금속판재의 고속충돌 파괴 유한요소 병렬 해석기법)

  • Moon, Ji-Joong;Kim, Seung-Jo;Lee, Min-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper simulations for the impact into ceramics and/or metal materials have been discussed. To model discrete nature for fracture and damage of brittle materials, we implemented cohesive-law fracture model with a node separation algorithm for the tensile failure and Mohr-Coulomb model for the compressive loading. The drawback of this scheme is that it requires a heavy computational time. This is because new nodes are generated continuously whenever a new crack surface is created. In order to reduce the amount of calculation, parallelization with MPI library has been implemented. For the high-speed impact problems, the mesh configuration and contact calculation changes continuously as time step advances and it causes unbalance of computational load of each processor. Dynamic load balancing technique which re-allocates the loading dynamically is used to achieve good parallel performance. Some impact problems have been simulated and the parallel performance and accuracy of the solutions are discussed.

Scientific Conservation Treatment of the Celadon Jar with the Inscription of 'the Fourth Sunhwa Year'(National Treasure No.326) (국보 제326호 청자 '순화4년'명 항아리의 과학적 보존처리)

  • Lee, Sun Myung;Kwon, Oh Young;Park, Jongseo;Han, Woo Rim
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.453-469
    • /
    • 2019
  • The celadon jar with inscription of 'the Fourth Sunhwa Year' is an important chronology that shows the conditions of production of the early celadon due to the inscription on the bottom including its purpose, application, and the producer. This celadon jar has been restored several times in the past. However, concerns over the structural stability, such as the separation and level differences in the joined cracks, have risen because of the aging of the repair materials, which were subjected to various environmental changes over a long time. By examining the conditions of preservation, the major damage was identified as the '入' shaped crack on the front, the 'V' shaped restored part and the crack on its left side, and the 'J' shaped crack on the back side. In the past, the cracks were found to be joined using a refined lacquer containing camphor, drying oil, rosin, etc. mixed with soil powder. The joint line was repainted with the refined lacquer and covered with gold powder. The missing parts were restored with gypsum and colored with acrylic color. After that, the repair materials were aged and emergency treatment was performed at the National Museum of Korea in 1981. At that time, Cemedine C or Cemedine C mixed with microballoons was used for reinforcing the cracks. Conservation treatment focused on removing the past repair materials and reinforcing the physically fragile parts by joining and restoring them based on the examination of the preservation condition. in addition, the area around the restored part was colored for future exhibition.

Development of Screening Technology for Marine Waste Disposal (수산폐기물 전처리 용 스크린기술 개발)

  • Moon, Serng-Bae;Jun, Seung-Hwan;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.57-63
    • /
    • 2009
  • In order to effectively isolate the marine wastes with an effluent standard, the pretreatment process is required to isolate solid materials from the liquid-solid mixed wastes. The more effective the pretreatment becomes, the more processing capacity of posttreatment will be improved and process facilities will be downsized. In this paper, we suggested the vibrating reverse-slant screen, investigated the optimal vibration frequency and vibrator installation angle for the separation of the liquid solid mixed wastes. Several experiments for separation efficiency were conducted under the condition of various vibration frequency($35{\sim}60Hz$, 5Hz interval) and vibrator angle($0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $90^{\circ}$) considering the crack of screen. The screen inclination angle is set up the gradient as $3^{\circ}{\sim}5^{\circ}$ through the preliminary experiments. Also, we made two types of screen(respectively rectangle and square screen). The separation device has shown the optimum efficiency at vibrator angle $0^{\circ}$ and vibration frequency 60Hz, and has no relation with the shape of screen. And the proposed technology is verified by comparing with quantity of suspended solids before and after filtration.

Development of Ni/Cr Plating Process for LRE Thrust Chamber (액체로켓엔진 연소기용 니켈/크롬 코팅의 공정 개발)

  • Cho, Hwang-Rae;Bang, Jeong-Suk;Rhee, Byung-Ho;Lee, Kwang-Jin;Lim, Byoung-Jik;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.603-607
    • /
    • 2009
  • A Ni/Cr plating process has been developed for applying to inner wall of liquid rocket engine(LRE) thrust chamber. Ni plating conditions were selected through thermal shock test and endurance verification of the plating layers was performed through hot firing test of a subscale thrust chamber with Ni/Cr plating. Test results showed that a crack or separation of the plating layers was not found. Judging from the results, Ni/Cr plating could be applied to LRE thrust chamber as a substitute of air plasma sprayed ceramic coating which is presently being used.

  • PDF

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.