Fabrication of Pd/YSZ Cermet Membrane for Hydrogen Separation

수소 분리를 위한 Pd/YSZ Cermet 분리막의 제조

  • Jeon, Sung-Il (Green House Gas Center, Korea Institute of Energy Research Korea Institute of Energy Research) ;
  • Park, Jung-Hoon (Green House Gas Center, Korea Institute of Energy Research Korea Institute of Energy Research) ;
  • Lee, Yong-Taek (Department of Chemical Engineering, Chung Nam National University)
  • 전성일 (한국에너지기술연구원 온실가스센터) ;
  • 박정훈 (한국에너지기술연구원 온실가스센터) ;
  • 이용택 (충남대학교 화학공학과)
  • Received : 2011.03.15
  • Accepted : 2011.06.17
  • Published : 2011.06.30

Abstract

Metal-ceramic composite membrane have been developed to separate hydrogen from mixed gases, particularly product streams generated during coal gasification and methane reforming. Cermet membrane was fabricated with palladium as hydrogen-permeable metal and $Y_2O_3$-stabilized $ZrO_2$ (YSZ) as ceramic supporter. As-prepared membrane showed dense structure with continuous channel of palladium. The hydrogen flux of Pd/YSZ membrane have been measured in the range of 0.5~2 atm with 100% hydrogen gas. The results indicate that the hydrogen flux was 0.333 mL/$min{\cdot}cm^2$ at $450^{\circ}C$ and 2 atm. The crack was formed in the surface and cross-section of membrane.

금속-세라믹 복합 분리막은 특히 석탄가스화 공정이나 메탄 개질에서 발생되는 혼합가스로부터 수소를 분리하기 위해 개발되어졌다. 수소투과 금속인 팔라듐과 세라믹 지지체로 $Y_2O_3$-stabilized $ZrO_2$ (YSZ)를 이용하여 cermet 수소분리막을 제조하였다. 이렇게 제조된 분리막은 팔라듐의 연속상이 잘 발달된 치밀 구조를 보였다. Pd/YSZ 분리막의 수소 투과량은 100% 수소를 흘려 0.5~2 atm에서 측정되었다. 수소 투과량은 $450^{\circ}C$, 2 atm에서 0.333 mL/$min{\cdot}cm^2$를 보였다. 수소 투과 후 분리막의 표면과 단면에서 균열이 형성되었다.

Keywords

References

  1. K. H. Lee, "Membrane separation of carbon dioxide", Membrane Journal, 4, 78 (1994).
  2. J. H. Park and I. H. Baek, "Status and prospect of pre-combustion $CO_2$ capture technology", KIC News, 12, 3 (2009).
  3. J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooymans, H. Weyten, F. Servaes, and R. Leysen, "Preparation of $LaSrCoFeO_{3_x}$ membranes", Solid State Ion., 135, 637 (2000). https://doi.org/10.1016/S0167-2738(00)00425-2
  4. M. D. Dolan, N. C. Dave, A. Y. Ilyushechkin, L. D. Morpeth, and K. G. Mclennan, "Composition and operation of hydrogen-selective amorphous alloy membranes", J. Membr. Sci., 285, 30 (2006). https://doi.org/10.1016/j.memsci.2006.09.014
  5. J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, S. A. Hong, and J. Kim, "A study on contamination of hydrogen permeable Pd-based membranes", Trans. of the Korean Hydrogen and New Energy Society, 14, 17 (2003).
  6. J. Shu, B. P. A. Grandjean, A. Van Neste, and S. Kaliaguine, "Catalytic palladium-based membrane reactors: a review", Canadian J. Chem. Eng., 69, 1036 (1991). https://doi.org/10.1002/cjce.5450690503
  7. J. W. Phair and S. P. S. Badwal, "Review of proton conductors for hydrogen separation", Ionics, 12, 103 (2006). https://doi.org/10.1007/s11581-006-0016-4
  8. K. Takeuchi, C. K. Loong, J. W. Richardson, J. Guan, S. E. Dorris, and U. Balachandran, "The crystal structures and phase transitions in Y-doped $BaCeO_3:$ their dependence on Y concentration and hydrogen doping", Solid State Ion., 138, 63 (2000). https://doi.org/10.1016/S0167-2738(00)00771-2
  9. M. Cai, S. Liu, K Efimov, J. g. Caro, A. FeldhOff, and H. Wang, "Preparation and hydrogen permeation of $BaCe_{0.95}Nd_{0.05}O_{3-{\delta}}$ membranes", J. Membr. Sci., 343, 90 (2009). https://doi.org/10.1016/j.memsci.2009.07.011
  10. G. C. Mather, D. Poulidi, A. Thursfield, M. J. Pascual, J. R. Jurado, and I. S. Metcalfe, "Hydrogen-permeation characteristics of a $srCeO_3$-based ceramic separation membrane: thermal, ageing and surface-modification effeets", Solid State Ion., 181, 230 (2010). https://doi.org/10.1016/j.ssi.2009.03.014
  11. C. Zuo, T. H. Lee, S. E. Dorris, U. Balachandran, and M. Liu, "Composite Ni-Ba $(Zr_{0.1}Ce_{0.7}Y_{0.2})\;O_3$ membrane for hydrogen separation", J. Power Sources, 159, 1291 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.042
  12. S. Okada, A. Mineshige, T. Kikuchi, M. Kobune, and T. Yazawa, "Cermet-type hydrogen separation membrane obtained from fine particles of high temperature proton-conductive oxide and palladium", Thin Solid Films, 515, 7342 (2007). https://doi.org/10.1016/j.tsf.2007.02.095
  13. S. I. Jeon, J. H. Park, S. J. Lee, and S. H. Choi, "Fabrication and stability of V/YSZ cemlet membrane for hydrogen separation", Membrane Journal, 20, 62 (2010).
  14. S. J. Lee, S. I. Jeon, and J. H. Park, "Fabrication and stability of Pd coated Ta/YSZ cermet membrane for hydrogen separation", Membrane Journal, 20, 69 (2010).
  15. T. Ozaki, Y. Zhang, M. Komaki, and C. Nishimura, "Preparation of palladium-coated V and V-15Ni membranes for hydrogen purification by electroless plating technique", Int. J. Hydrog. Energy, 28, 297 (2003). https://doi.org/10.1016/S0360-3199(02)00065-4
  16. O. Iyoha, R. Enick, R. Killmeyer, and B. Morreale, "The influence of hydrogen sulfide-to-hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd-Cu membranes", J. Membr. Sci., 305, 77 (2007). https://doi.org/10.1016/j.memsci.2007.07.032
  17. M. V. Mundschau, X. Xie, and A. F. Sammells, "Carbon dioxide capture for storage in deep geologic formations", pp. 291-306, Elsevier Science, Amsterdam (2005).
  18. U. Balachandran, T. H. Lee, L. Chen, S. J. Song, J. J. Picciolo, and S. E. Dorris, "Hydrogen separation by dense cermet membranes", Fuel, 85, 150 (2006). https://doi.org/10.1016/j.fuel.2005.05.027
  19. R. C. Hurlbert and J. O. Konecny, "Diffusion of hydrogen through palladium", J. Chem. Phys., 34, 655 (1961). https://doi.org/10.1063/1.1701003
  20. S. E. Nam and K. H. Lee, "Fabrication and application of palladium-based alloy composite membranes", J. Korean Ind. Eng. Chem., 13, 199 (2002).