• 제목/요약/키워드: crack ratio

검색결과 1,306건 처리시간 0.029초

균열닫힘모델을 이용한 수치해석 (Numerical Analysis of Crack Growth Using a Crack Closure Model)

  • 최동호;최항용;이준구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.365-372
    • /
    • 2001
  • This study is concerned with the application of an analytical model of cyclic crack growth that includes the effects of crack closure. The crack closure model is based on the Dugdale model and the strip model, considering the plasticity-induced closure which is caused by residual plastic deformation remaining in the wake of an advancing crack. This study is performed to get the relation between crack growth and crack opening stress with the constant stress ratio, and the relation between stress ratio and crack opening stress with the constant maximum stress under constant-amplitude loading. Under constant-amplitude loading, the crack opening stress is conversed the constant value as a crack grows and is proportion to both the stress ratio and the maximum stress. The crack closure effect, however, is decreased in the positive stress ratio and disappeared at about 0.7. The crack growth analysis using the crack closure model shows that the influence of stress ratio is minimized in the relation between crack growth ratio and effective stress intensity range specially at the negative stress ratio.

  • PDF

Al 2024-T3재의 Crack Opening Point의 평가에 관한 연구 (A Study on Evaluation of Crack Opening Point in Al 2024-T3 Material)

  • 최병기;장경천
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.16-20
    • /
    • 2004
  • This paper aims to analyze fatigue fracture mechnisms with high strength aluminum alloys, which are widely used in vehicles or airplanes to prevent accidents. Usefulness of the crack opening point was proposed by using an effective stress intensity facor when evaluating the fatigue crack propagaion rate. Therefore an exact crack opening ratio can be measured for a more exact fatigue crack propagation rate. It is found that the fatigue crack propagation rate was valid within the range of experimentation as an effective stress intensity factor. Summarizing the results are as follows in this paper ; (1) It is found that the value of the crack opening ratio is constant at the rear of the specimen, U'=0.25 at the crack mouth and U'=0.45 at the crack tip, respectively regardless of the stress ratio. (2) The crack opening ratio is different according to measurement locations. The crack opening ratio value was measured at the crack mouth by a clip gage or measured behind the specimen by a strain gage. It is found that the crack opening ratio value is more accurate that any other measuring test for evaluating the crack propagation ratio test by effective stress intensity factor.

고강도 알미늄 합금재에 있어서 크랙열림점 평가에 관한 연구(I) (A Study on Evaluation of Crack Opening Point in High Strength Aluminum Alloy(I))

  • 최병기
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.100-106
    • /
    • 1993
  • This paper aims to synthesize the research on fatigue fracture mechanisms of high strength aluminum alloys which are widely used in motorcars or airplanes to prevent accidents. To measure the data of crack opening ratio, the same materials and method are used for evaluating the fatigue crack propagation rate as an effective stress intensity factor. But, many researchers have brought different results. An exact crack opening ratio was, therefore, proposed for getting a more accurate fatigue crack propagation rate. The main conclusions obtained are as follows. (1) As a result of the fatigue test, the value of the crack opening ratio is the same regardless of the stress ratio. (2) The value of crack opening ratio is different according to the measuring point. After measuring the crack propagation rate by using an effective stress intensity factor, the crack opening ratio value measured at the crack mouth by a clip gage, or measured rear of the specimen by a strain gage is more accurate than that by any other measuring test.

  • PDF

혼합모드(I+II)에서 피로균열진전에 미치는 응력비의 영향 (Effect of Stress Ratio on Fatigue Crack Growth in Mixed Mode(I+II))

  • 공병채;최명수;권현규;최성대
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.90-96
    • /
    • 2009
  • The loading condition of actual construction works is complex. The shear effect of mixed-mode load component are crack propagation mechanism in step larger than the crack initial mechanism. Therefore, in this study received a mixed-mode loading on fatigue crack stress ratio on crack propagation path and speed of progress to learn whether stress affects crack propagation. ${\Delta}$ P a constant state of fatigue tests in Mode I, II give the same stress ratio, frequency 10Hz, sinusoidal waveform was used. A lower stress ratio fatigue crack propagation angle is small. This is less affected by the Mode II. Therefore, a mixed-mode fatigue crack propagation is to progress by the Mode. Stress ratio in a mixed mode crack in the path of progress and found a lot of impact.

  • PDF

강재의 피로균열전파율에 미치는 시험편 크기의 영향 (Effect of Specimen Size on Fatigue crack Growth Rate in Steels)

  • 안석화
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.99-105
    • /
    • 2000
  • This paper describes the effect of specimen size on fatigue crack growth rate for the offshore structural high-tensile-strength steel BS4360 and machine structural steel SM45C. The purpose of the present study is to investigate the effect of stress ratio aspect ratio specimen width and specimen thickness of the fatigue crack growth behavior. Compact tension specimens with a LT orientation for BS4360 and SM45C steels were used, All testing was done at constant stress intensity factor range controlled fatigue crack growth condition. The investigation demonstrates that the fatigue crack growth rate is increased with increasing stress ratio and specimen thickness and is decreased with increasing specimen width. The fatigue crack growth rate is unaffected by aspect ratio until a/W=0.50 but is increased by increasing spect ratio from a/W=0.55.

  • PDF

파면거칠기 유도 균열닫힘에 의한 혼합모드 피로균열의 전파거동 및 파면에 대한 평가 (Assessment for Propagation Behavior and Fracture Surface of Mixed-mode Fatigue Crack by Fracture Surface-Roughness Induced Crack Closure)

  • 서기정;이정무
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.432-440
    • /
    • 2007
  • In this study, we have investigated the closure behavior of fatigue cracks in SAPH440 steel plates under a mixed-mode I+II loading. A crack image capturing system as a direct measuring method was used to measure the closure levels at a crack tip. The crack closure levels in the fluctuation and stable sections were increased with the increase of the mode mixture ratio. The mode mixture ratio independent fatigue crack propagation rates equation was calculated by considering mixed-mode crack closure levels. The equation was examined according to the application method of crack opening ratio. The fracture surface analysis by C-scan method was also performed in order to investigate the closure mechanism and propagation mode of crack under the mixed-mode I+II loading. The crack closure under the mixed mode I+II is confirmed as a surface roughness closure by the quantitative analysis of fracture surface using the proposed surface roughness parameter.

수치계산에 의한 균열개구비의 영향도 평가에 관한 연구 (A Study on Parameter Sensitivity Study of Crack Opening Ratio by Using Numerical Calculation)

  • 최병기;권택용;이상열
    • 한국안전학회지
    • /
    • 제12권2호
    • /
    • pp.17-21
    • /
    • 1997
  • The fatigue crack propagation rate has so far been measured by the effective stress intensity factor range Δ K/sub eff/. But no research has been done to study how much the crack opening ratio influences the expectation of the fatigue crack propagation. Therefore, this paper evaluates of the crack opening ratio on the fatigue crack propagation life by using the method of parameter sensitivity study. Summarizing the result ; ( 1 ) When the crack opening ratio U' is high, the effect of U' gets larger than any other except for the material factor m. But when U' is low, the effect is also diminished. Therefore, the selection of the lowest value possible is desirable in the evaluation of life. (2) When the value of the material factor m is high, the effect of crack opening ratio U' is increased, at the same time the effect of the other parameters also increased wholly. The effect of material factor m itself on life is high, but in case the material factor m is high, that the effect of each parameter on life get higher is unique. In designing, better attention to the material selection should be drawn. (3) In case the stress ratio R gets smaller, the effect of crack opening ratio U' is unchangeable. But the effect of R itself remarkably decreases, and the effect of material factor m somewhat decreases.

  • PDF

응력비의 영향을 고려한 표면피로균열의 균열성장식 (Fatigue Crack Growth Equation considered the Effect of Stress Ratio)

  • 강용구;김대석
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.39-49
    • /
    • 1998
  • In this work, fatigue tests by axial loading were carried out to investigate the effect of stress ratio on the growth behaviors of surface fatigue crack for SM45C steel and Al 2024-T4 alloy. The growth behaviors of surface crack have been monitored during fatigue process by measuring system attached CCTV and monitor. When the growth rates of surface crack were investigate by the concept of LEFM based on Newman-Raju's .DELTA.K, the dependence of stress ratio appears both SM45C steel and Al 2024-T4 alloy. Therefore, modified stress intensity factor range, .DELTA.K' [=(1+R)/sup n/.DELTA.K] are intorduced to eliminate the dependence of stress ratio. Using .DELTA.K', it is found that the dependence of stress ratio disappears both SM45C steel and Al 2024-T4 alloy.

  • PDF

다중 과하중에 의한 A1 7075-T6 합금의 피로균열 성장지연현상에 관한 연구 (A Study on Fatigue Crack Growth Retardation Phenomena of Al 7075--T6 Alloy under Multiple overload(I))

  • 이택순;이유태
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.96-104
    • /
    • 1992
  • Aircraft structures and engineering structures are always subject to variable amplitude loads. Variable amplitude loads include some kind of loading history; for example, constant amplitude load, single peak overload and block overload etc. Crack growth under variable amplitude loading exhibits retardation effect. In this study, the 4 point bending fatigue test was performed by hydrolic servo fatigue testing machine on 7075-T6 Al-alloy. The retardation effect of overload ratio and numbers of overload cycle was quantitatively studied. 1) Change of retardation effect against increment of overload ratio is more evident when the multiple overload is applied than single overload is done. 2) The number of overload cycle is very important factor about the crack growth retardation effect when the overload ratio is more than 1.75; that is not when the overload ratio is less than 1.75. 3) Overload affected zone size increased gradually by increment of crack growth retardation effect. 4) Crack driving force is more greatly reduced when the crack tip branched off two direction than it sloped to one direction.

  • PDF

Fatigue Crack Growth Behavior in Ultrafine Grained Low Carbon Steel

  • Kim, Ho-Kyung;Park, Myung-Il;Chung, Chin-Sung;Shin, Dong-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1246-1252
    • /
    • 2002
  • Ultrafine grained (UFG) low carbon (0.15 wt.% C) steel produced by equal channel angula. pressing (ECAP) was tested for investigating the effect of load ratio on the fatigue crack growth rate. Fatigue crack growth resistance and threshold of UFG steel were lower than that of asreceived coarse grained steel. It was attributed to the less tortuous crack path. The UFG steel exhibited slightly higher crack growth rates and a lower △Kth with an increase of R ratio. The R ratio effect on crack growth rates and △Kth was basically indistinguishable at lower load ratio (R >0.3), compared to other alloys, which indicates that contribution of the crack closure vanishes. The crack growth rate curve for UFG steel exhibited a longer linear extension to the lower growth rate regime than that for the coarse grained as-received steel.