• Title/Summary/Keyword: crack propagation rate

Search Result 416, Processing Time 0.023 seconds

Stress Corrosion Cracking of High Strength Al-Zn-Mg-Cu Aluminum Alloy with Different Compositions (고강도 Al-Zn-Mg-Cu 합금에서 조성에 따른 응력부식균열 특성)

  • Kim, Jun-Tak;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.109-113
    • /
    • 2008
  • High strength 7xxx series Al-Zn-Mg alloy have been investigated for using light weight automotive parts especially for bump back beam. The composition of commercial 7xxx aluminum has the Zn/Mg ratio about 3 and Cu over 2 wt%, but this composition isn't adequate for appling to automotive bump back beam due to its high resistance to extrusion and bad weldability. In this study the Zn/Mg ratio was increased for better extrusion and Cu content was reduced for better welding. With this new composition we investigated the effect of composition on the resistivity against stress corrosion cracking. As the Zn/Mg ratio is increased fracture energy obtained by slow strain rate test was decreased, which means degradation of SCC resistance. While the fracture energy was increased with Cu contents although it is below 1%, which means improvement of SCC resistance. These effects of composition change on the SCC resistivity were identified by observing the fracture surface and crack propagation.

The Influence of Dynamic Strain Aging on Tensile and LCF Properties of Prior Cold Worked 316L Stainless Steel (냉간가공된 316L 스테인리스 강의 인장 및 저주기 피로 물성치에 미치는 동적변형시효의 영향)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1398-1408
    • /
    • 2003
  • Tensile and LCF(low cycle fatigue) tests were carried out in air at wide temperature range 20$^{\circ}C$-750$^{\circ}C$ and strain rates of 1${\times}$10$\^$-4//s-1${\times}$10$\^$-2/ to ascertain the influence of strain rate on tensile and LCF properties of prior cold worked 316L stainless steel, especially focused on the DSA(dynamic strain aging) regime. Dynamic strain aging induced the change of tensile properties such as strength and ductility in the temperature region 250$^{\circ}C$-600$^{\circ}C$ and this temperature region well coincided with the negative strain rate sensitivity regime. Cyclic stress response at all test conditions was characterized by the initial hardening during a few cycles, followed by gradual softening until final failure. Temperature and strain rate dependence on cyclic softening behavior appears to result from the change of the cyclic plastic deformation mechanism and DSA effect. The DSA regimes between tensile and LCF loading conditions in terms of the negative strain rate sensitivity were well consistent with each other. The drastic reduction in fatigue resistance at elevated temperature was observed, and it was attributed to the effects of oxidation, creep and dynamic strain aging or interactions among them. Especially, in the DSA regime, dynamic strain aging accelerated the reduction of fatigue resistance by enhancing crack initiation and propagation.

Investigation of Residual Stress Distributions of Induction Heating Bended Austenitic Stainless Steel (316 Series) Piping (유도 가열 굽힘된 316 계열 오스테나이트 스테인리스 강 배관의 잔류응력 분포 고찰)

  • Kim, Jong Sung;Kim, Kyoung Soo;Oh, Young Jin;Chang, Hyun Young;Park, Heung Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.809-815
    • /
    • 2014
  • The induction heating bending process, which has been recently applied to nuclear piping, can generate residual stresses due to thermomechanical mechanism during the process. This residual stress is one of the crack driving forces that have important effects on crack initiation and propagation. However, previous studies have focused only on geometric shape variations such as the change in thickness and ovality. Moreover, very few studies are available on the effects of process variables on residual stresses. This study investigated the effects of process variables on the residual stress distributions of induction heating bended austenitic stainless steel (316 series) piping using parametric finite element analysis. The results indicated that the heat generation rate and feed velocity have significant effects on the residual stresses whereas the moment and bending angle have insignificant effects.

A study on fatigue properties of plasma carburized low carbon Cr-Mo steel (플라즈마 침탄한 저탄소 Cr-Mo강의 피로특성에 관한 연구)

  • Park, Kyeong-Bong;Sin, Dong-Myung;Lee, Chang-Youl;Lee, Ktung-Sub
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.505-514
    • /
    • 2000
  • The carburizing behavior and fatigue properties of the plasma carburized low carbon Cr-Mo steel(0.176C-1.014Cr-0.387Mo) have been investigated. The effective case depth in plasma carburized steel increased up to 50% in comparison with that of gas carburizing, and this case depth increased with the increasing surface carbon content. With increasing time in plasma carburizing, the surface carbon content increased but its increasing rate decreased. Fatigue properties were studied in terms of microstructure, case depth, retained austenite and residual stress near the surface. The fatigue limit of the plasma carburized steel was higher than that of gas carburized one. The initiation of microcracks and initial crack propagation were retarded due to a relatively little surface and internal oxidation layer in plasma carburized steel. Fractography showed the crack initiated at the surface, and transgranular fracture at surface layer was more predominant in plasma carburized steel compared to that of gas carburized steel.

  • PDF

A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head (액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성)

  • Hong, Hyun-Uk;Bae, Sang-Hyun;Kwon, Soon-Il;Lee, Je-Hyun;Do, Jeong-Hyeon;Choi, Baig-Gyu;Kim, In-Soo;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

The Dry Sliding Wear Properties of $SiC_w$ and $SiC_p$ Reinforced Bronze Matrix Composites (무윤활 미끄럼 마찰하에서 SiC 휘스커 및 입자강화 청동기지 복합재의 마모특성)

  • 이상로;허무영
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.49-55
    • /
    • 1993
  • The dry sliding wear properties of the sintered Cu-10 wt%Sn bronze alloys reinforced with $SiC_w$ and $SiC_p$ were investigated by a pin-on-disc wear testing machine. The worn surfaces and the cross sections of the wear specimens and the wear debris were observed by SEM to study the effect of the variation of the ceramic phase contents in the composite and the wear condition on the wear behaviors. The wear of bronze matrix was dominated by the adhesive wear. The transition from mild to severe wear was found in the bronze matrix specimens at the applied load higher than 20N where the surface delamination caused the severe wear. The addition of $SiC_w$ and $SiC_p$ reinforcements in the romposites was proved to reduce the wear rate by the matrix strengthening at the applied load higher than 20N. SiC whiskers having a large length to diameter ratio which hold the deformed matrix were effective to hinder the crack propagation near the worn surface. Thus the maximum wear resistance was obtained in the composite reinforced by $SiC_w$ at the higher applied load.

A Study on the Fracture Surface Growth Behavior of Steel used for Frame of Vehicles by Corrosion Fatigue (자동차 프레임용 강재의 부식피로에 의한 파면성장거동에 관한 연구)

  • Lee, Sang-Yoel;Im, Jong-Mun;Im, U-Jo;Lee, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.61-70
    • /
    • 1992
  • In this study, corrosion fatigue test of SAPH45 steel was performed by the use of plane bending fatigue tester in marine environment and investigated fracture surface growth behavior of base metal and heat affected zone corrosion fatigue. The main results obtained are as follows: 1) Fracture surface growth of heat affected zone (HAZ) is delayed more than that of base matel (BM), and they tend to faster in seawater than in air. 2) Corrosion sensitivity to corrosion fatigue life of HAZ is more susceptible than that of BM. 3)In the case of the corner crack by corrosion fatigue, the correlation between the propagation rate of fracture surface area(dA/dN) and stress intensity factor range(ΔK) for SAPH45 are applied to Paris rule as follows: dA/dN=C(ΔK) super(m) where m is the slope of the correlation, and is about 6.60-6.95 in air and about 6.33-6.41 in seawater respectively.

  • PDF

Effect on Axial Rake Angle of Cutting Edge for Machinable Ceramics (절삭 선단의 축 방향 경사각이 가공성 세라믹에 미치는 영향)

  • Jang, Sung-Min;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. Generally, ceramics are machined using conventional method such as grinding and polishing. However these processes are generally costly and have low MRR(material removal rate). To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 10 and 15%. The purpose of this study is an analysis of endmill's rake angle for appropriate tools design and manufacturing for the machinable ceramics. In this study, Experimental works are executed to measure cutting force, surface roughness, tool fracture, on different axial rake angle of endmills. Cutting parameters, namely, feed, cutting speed and depth of cut are used to accomplish purpose of this paper. Required experiments are performed, and the results are investigated.

Effects of Underfills on the Dynamic Bending Reliability of Ball Grid Array Board Assembly (Ball Grid Array 보드 어셈블리의 동적굽힘 신뢰성에 미치는 언더필의 영향)

  • Jang, Jae-Won;Bang, Jung-Hwan;Yoo, Se-Hoon;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.650-654
    • /
    • 2011
  • In this paper, the effects of conventional and newly developed elastomer modified underfill materials on the mechanical shock reliability of BGA board assembly were studied for application in mobile electronics. The mechanical shock reliability was evaluated through a three point dynamic bending test proposed by Motorola. The thermal properties of the underfills were measured by a DSC machine. Through the DSC results, the curing condition of the underfills was selected. Two types of underfills showed similar curing behavior. During the dynamic bending reliability test, the strain of the PCB was step increased from 0.2% to 1.5% until the failure circuit was detected at a 50 kHz sampling rate. The dynamic bending reliability of BGA board assembly using elastomer modified underfill was found to be superior to that of conventional underfill. From mechanical and microstructure analyses, the disturbance of crack propagation by the presence of submicron elastomer particles was considered to be mainly responsible for that result rather than the shear strength or elastic modulus of underfill joint.

Change in Microstructure and Coating Layer of Al-Si Coated Steel after Conductive Heating (Al-Si 도금강의 통전 가열에 따른 미세조직과 도금층 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.107-115
    • /
    • 2021
  • Al-Si coated boron steel has been widely used as commercial hot stamping steel. When the steel is heated at 900~930℃ for 5 min in an electric furnace, thickness of the coating layer increases as a consequence of formation of intermetallic compounds and diffusion layer. The diffusion layer plays an important roll in blunting the propagation of crack from coating layer to base steel. Change in microstructure and coating layer of Al-Si coated boron steel after conductive heating with higher heating rate than electric furnace has been investigated in this study. Conductive-heated steel showed the martensitic structure with vickers hardness of 505~567. Both intermetallic compounds in coating layer and diffusion layer were not observed in conductive-heated steel due to rapid heating. It has been found that the conductive-heating consisting of rapid heating to 550℃ which is lower than melting point of Al-Si coating layer, slower heating to 900℃, and then 1 min holding at 900℃ is effective in forming intermetallic compound in coating layer and diffusion layer.