• Title/Summary/Keyword: crack propagation rate

Search Result 417, Processing Time 0.028 seconds

The Research of Fatigue-Crack Initiation and Propagation for S35C Steel (S35C강의 피로균열 발생 및 진전에 관한 연구)

  • 진영준
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • Surface crack growth characteristics and influence of the stress amplitude in rotary bending fatigue test were evaluated for annealed S35C steel, and than fractal dimensions of fatigue crack paths estimated using the box counting method. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Crack growth rate ds/dN and db/dN (s : half crack length at the surface crack, b : crack depth) depended on stress amplitude (${\Delta}{\sigma}/2$), stress intensity factor range (${\Delta}K_A, {\Delta}K_C$) and crack length. (2) At the effect area of 0.3 mm hole notch (s<0.5 mm) crack growth rate did not depend on these factors. (3) The fractal dimensions (D) increased with stress amplitude (${\Delta}{\sigma}/2$) but decreased with cyclic number.

  • PDF

Crack Propagation Behavior in a Piezoelectric Strip Bonded to Elastic Materials (탄성체에 접합된 압전 스트립에서의 균열 전파 거동)

  • Kwon, Soon-Man;Choi, Hyo-Seung;Lee, Kang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.304-309
    • /
    • 2001
  • In this paper, we consider the dynamic electromechanical behavior of an eccentric Yoffe permeable crack in a piezoelectric ceramic strip sandwiched between two elastic materials under the combined anti-plane mechanical shear and in-plane electrical loadings. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. The initial crack propagation orientation for PZT-5H piezoceramics is predicted by maximum energy release rate criterion.

  • PDF

A Study on The Strength Evaluation of welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-710
    • /
    • 2002
  • Welding is used not only during the shipbuilding, but also during the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, The result within identical materials showed that the heat-affected zone was slower than that of parent metal

  • PDF

A Study of Fatigue Crack Growth in Shot Peened Spring Steel (쇼트피닝한 스프링강의 피로균열진전 연구)

  • Park, Keyung-Dong;Jin, Young-Beom
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.20-24
    • /
    • 2004
  • Antifatigue failure technology take an important the part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel and improving the fatigue strength on surface. Therefore in this paper the effect of compressive residual stress by shot peening on fatigue crack growth characteristics in stress ratio(R=0.1, 0.3, 0.6)was investigated with considering fracture mechanics. There is difference between shot peening specimen and unpeening specimen. Fatigue crack growth rate of shot peening specimen was lower than that of unpeening specimen. Fatigue lift shows more improvement in the shot peening material than in the unpeening material. And compressive residual stress of surface on the shot peening processed operate resistance force of fatigue crack propagation. That is the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

The Effect of Microstructure and Temperature on Fatigue Crack Propagation in Ti-3A1-2.5V A11oy (Ti-3A1-2.5V 합금의 피로균열전파특성에 미치는 미세조직 및 온도의 영향)

  • 임병수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.58-66
    • /
    • 1997
  • Ti alloys, with the advantageous tensile strength/density ratio and the chemical stability, have been used widely in the aerospace and chemical engineering industries and their usages are still expanding in various industrial areas. In the automotive industry, because of their superior merits of weight reduction and fuel saving, Ti alloys are expected to be used as various part materials including connecting rods, engine valves, springs and retainers, which are all subjected to the fatigue loads. In this study, using Ti-3A1-2.5V, the effects of temperature and microstructure change on fatigue crack propagation has been investigated. Five different microstructures were tested at the temperatures of room temperature, 20$0^{\circ}C$, 30$0^{\circ}C$ and 40$0^{\circ}C$ under the same frequency 20Hz. Some of the conclusions obtained are as follows: (1)Microstructurally, the morphology of less $\alpha$-phase and finer lamellar structure of $\alpha$ and $\beta$-Ti showed better registance to the fatigue crack propagation. (2)Fatigue crack growth rate increased with test temperature.

  • PDF

A Model Estimating the Ratigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress ratio (응력비의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.82-89
    • /
    • 1994
  • In this paper the effect of stress ratio on the fatigue crack growth rate of aluminum alloy A5083-O was examined. The fatigue tests were carried out using CCT (center cracked tension) specimens and CT(compact tension) specimens which were subjected to 0.5 and -1.0 stress ratio respectively. The obtained results are as follows; 1) The $\DeltaK_{th}$ as the function of stress ratio R was introduced in evaluating the fatigue crack growth rate of A5083-O. 2) A new model evaluating the effect of stress ratio on the fatigue crack growth rate was developed over the region of low and high propagation rate.

  • PDF

Fatigue Strength and Root-Deck Crack Propagation for U-Rib to Deck Welded Joint in Steel Box Girder

  • Zhiyuan, YuanZhou;Bohai, Ji;Di, Li;Zhongqiu, Fu
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1589-1597
    • /
    • 2018
  • Fatigue tests and numerical analysis were carried out to evaluate the fatigue performance at the U-rib to deck welded joint in steel box girder. Twenty specimens were tested corresponding to different penetration rates (80 and 100%) under fatigue bending load, and the fatigue strength was investigated based on hot spot stress (HSS) method. The detailed stress distribution at U-rib to deck welded joint was analyzed by the finite element method, as well as the stress intensity factor of weld root. The test results show that the specimens with fully penetration rate have longer crack propagation life due to the welding geometry, resulting in higher fatigue failure strength. The classification of FAT-90 is reasonable for evaluating fatigue strength by HSS method. The penetration rate has effect on crack propagation angle near the surface, and the 1-mm stress below weld toe and root approves to be more suitable for fatigue stress assessment, because of its high sensitivity to weld geometry than HSS.

The Effect of Temperature on Fatigue Fracture in Pressure Vessel Steel at Low Temperature (저온 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • Park, Keyung-Dong;Ha, Keyung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.359-365
    • /
    • 2002
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C,\;-30^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C,\;-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to tile extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze;Liu, Yulan;Wang, Biao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1250-1258
    • /
    • 2021
  • In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

The Effect of Loading Waveform on the High Temperature Fatigue Crack Propagation in P92 and STS 316L Steel (P92와 STS 316L강의 고온 피로 균열 성장에 미치는 하중 파형의 영향)

  • 김수영;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.136-140
    • /
    • 2002
  • High temperature fatigue crack growth behavior of P92 and STS 316L steel were investigated under four load conditions using CT type specimens. Loading and unloading times for the low wave forms were combinations of 1 sec. and 50 sec., which were two symmetric wave forms and two unsymmetric wave forms. Their behaviors are characterized using ΔK parameter. In STS 316L, Crack growth rate generally increases as frequency decreases. However, sensitivity of the loading rate to crack growth rate was fecund to be far greater than that of the unloading time. It is because as loading time increases, creep occurs at crack tip causing the crack growth rate to increase. However creep does not occur at the crack tip even if the unloading time is increased. In P92 steel, crack growth rate showed same behavior as in STS 316L. But the increase in loading or unloading time made almost no difference in crack growth rate, suggesting that no significant creep occurs in P92 steel even though loading time increases. After conducting high temperature tensile tests and comparing high temperature fatigue crack growth rates under various wave forms, it was proved that P92 steel has not only good high temperature properties but also improved, better high temperature fatigue properties than STS 316L.