• Title/Summary/Keyword: crack network

Search Result 157, Processing Time 0.028 seconds

A fast and simplified crack width quantification method via deep Q learning

  • Xiong Peng;Kun Zhou;Bingxu Duan;Xingu Zhong;Chao Zhao;Tianyu Zhang
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.219-233
    • /
    • 2023
  • Crack width is an important indicator to evaluate the health condition of the concrete structure. The crack width is measured by manual using crack width gauge commonly, which is time-consuming and laborious. In this paper, we have proposed a fast and simplified crack width quantification method via deep Q learning and geometric calculation. Firstly, the crack edge is extracted by using U-Net network and edge detection operator. Then, the intelligent decision of is made by the deep Q learning model. Further, the geometric calculation method based on endpoint and curvature extreme point detection is proposed. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method, achieving high precision in the real crack width quantification.

Crack detection in folded plates with back-propagated artificial neural network

  • Oguzhan Das;Can Gonenli;Duygu Bagci Das
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.319-334
    • /
    • 2023
  • Localizing damages is an essential task to monitor the health of the structures since they may not be able to operate anymore. Among the damage detection techniques, non-destructive methods are considerably more preferred than destructive methods since damage can be located without affecting the structural integrity. However, these methods have several drawbacks in terms of detecting abilities, time consumption, cost, and hardware or software requirements. Employing artificial intelligence techniques could overcome such issues and could provide a powerful damage detection model if the technique is utilized correctly. In this study, the crack localization in flat and folded plate structures has been conducted by employing a Backpropagated Artificial Neural Network (BPANN). For this purpose, cracks with 18 different dimensions in thin, flat, and folded structures having 150, 300, 450, and 600 folding angle have been modeled and subjected to free vibration analysis by employing the Classical Plate Theory with Finite Element Method. A Four-nodded quadrilateral element having six degrees of freedom has been considered to represent those structures mathematically. The first ten natural frequencies have been obtained regarding healthy and cracked structures. To localize the crack, the ratios of the frequencies of the cracked flat and folded structures to those of healthy ones have been taken into account. Those ratios have been given to BPANN as the input variables, while the crack locations have been considered as the output variables. A total of 500 crack locations have been regarded within the dataset obtained from the results of the free vibration analysis. To build the best intelligent model, a feature search has been conducted for BAPNN regarding activation function, the number of hidden layers, and the number of hidden neurons. Regarding the analysis results, it is concluded that the BPANN is able to localize the cracks with an average accuracy of 95.12%.

The Integrity Evaluation of weld zone in railway rails Using Neural Network (신경회로망을 이용한 철도레일 용접부의 건전성평가)

  • 윤인식;임미섭
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.81-86
    • /
    • 2003
  • This study proposes the neural network simulator for the integrity evaluation of weld zone in railway rails. For these purposes, the ultrasonic signals for defects(crack) of weld zone in frames are acquired in the type of time series data and echo strength. The detection of the natural defects in railway truck is performed using the characteristics of echodynamic pattern in ultrasonic signal. And then their applications evaluated feature extraction based on the time-frequency-attractor domain(peak to peak, rise time, rise slope, fall time, fall slope, pulse duration, power spectrum, and bandwidth) and attractor characteristics (fractal dimension and attractor quadrant) etc. The constructed neural network simulator agrees fairly well with the measured results of test block(defect location, beam propagation distance, echo strength, etc). The Proposed neural network simulator in this study can be used for the integrity evaluation of weld zone in railway rails.

A Comparative Evaluation of $K_{op}$ Determination and $\Delta{K}_{eff}$ Estimation Methods

  • Kang, Jae-Youn;Song, Ji-Ho;Koo, Ja-Suk;Park, Byung-Ik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.961-971
    • /
    • 2004
  • Methods for determination of the crack opening stress intensity factor ($K_{op}$) and for estimation of the effective stress intensity factor range ($\Delta{K}_{eff}$) are evaluated for crack growth test data of aluminum alloys. Three methods of determining $K_{op}$, visual measurement, ASTM offset compliance method, and the neural network method proposed by Kang and Song, and three methods of estimating $\Delta{K}_{eff}$, conventional, the 2/PIO and 2/PI methods proposed by Donald and Paris, are compared in a quantitative manner by using evaluation criteria. For all $K_{op}$ determination methods discussed, the 2/PI method of estimating $\Delta{K}_{eff}$ provides good results. The neural network method of determining $K_{op}$ provides good correlation of crack growth data. It is recommended to use 2/PI estimation with the neural $K_{op}$ determination method. The ASTM offset method used in conjunction with 2/PI estimation shows a possibility of successful application. It is desired to improve the ASTM method.

Crack detection in concrete slabs by graph-based anomalies calculation

  • Sun, Weifang;Zhou, Yuqing;Xiang, Jiawei;Chen, Binqiang;Feng, Wei
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.421-431
    • /
    • 2022
  • Concrete slab cracks monitoring of modern high-speed railway is important for safety and reliability of train operation, to prevent catastrophic failure, and to reduce maintenance costs. This paper proposes a curvature filtering improved crack detection method in concrete slabs of high-speed railway via graph-based anomalies calculation. Firstly, large curvature information contained in the images is extracted for the crack identification based on an improved curvature filtering method. Secondly, a graph-based model is developed for the image sub-blocks anomalies calculation where the baseline of the sub-blocks is acquired by crack-free samples. Once the anomaly is large than the acquired baseline, the sub-block is considered as crack-contained block. The experimental results indicate that the proposed method performs better than convolutional neural network method even under different curvature structures and illumination conditions. This work therefore provides a useful tool for concrete slabs crack detection and is broadly applicable to variety of infrastructure systems.

A Study on High Temperature Low Cycle Fatigue Crack Growth Modelling by Neural Networks (신경회로망을 이용한 고온 저사이클 피로균열성장 모델링에 관한 연구)

  • Ju, Won-Sik;Jo, Seok-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.2752-2759
    • /
    • 1996
  • This paper presents crack growth analysis approach on the basis of neural networks, a branch of cognitive science to high temperature low cycle fatigue that shows strong nonlinearity in material behavior. As the number of data patterns on crack growth increase, pattern classification occurs well and two point representation scheme with gradient of crack growth curve simulates crack growth rate better than one point representation scheme. Optimal number of learning data exists and excessive number of learning data increases estimated mean error with remarkable learning time J-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

Fault Diagnosis of a Rotating Blade using HMM/ANN Hybrid Model (HMM/ANN복합 모델을 이용한 회전 블레이드의 결함 진단)

  • Kim, Jong Su;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.814-822
    • /
    • 2013
  • For the fault diagnosis of a mechanical system, pattern recognition methods have being used frequently in recent research. Hidden Markov model(HMM) and artificial neural network(ANN) are typical examples of pattern recognition methods employed for the fault diagnosis of a mechanical system. In this paper, a hybrid method that combines HMM and ANN for the fault diagnosis of a mechanical system is introduced. A rotating blade which is used for a wind turbine is employed for the fault diagnosis. Using the HMM/ANN hybrid model along with the numerical model of the rotating blade, the location and depth of a crack as well as its presence are identified. Also the effect of signal to noise ratio, crack location and crack size on the success rate of the identification is investigated.

A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network

  • Abolbashari, Mohammad Hossein;Nazari, Foad;Rad, Javad Soltani
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.299-313
    • /
    • 2014
  • In the first part of this paper, the influences of some of crack parameters on natural frequencies of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial Neural Networks (ANNs) are designed for prediction of FGB's Cracks' location and depth. Particle Swarm Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The accuracy of two training methods' results are investigated.

Railway sleeper crack recognition based on edge detection and CNN

  • Wang, Gang;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.779-789
    • /
    • 2021
  • Cracks in railway sleeper are an inevitable condition and has a significant influence on the safety of railway system. Although the technology of railway sleeper condition monitoring using machine learning (ML) models has been widely applied, the crack recognition accuracy is still in need of improvement. In this paper, a two-stage method using edge detection and convolutional neural network (CNN) is proposed to reduce the burden of computing for detecting cracks in railway sleepers with high accuracy. In the first stage, the edge detection is carried out by using the 3×3 neighborhood range algorithm to find out the possible crack areas, and a series of mathematical morphology operations are further used to eliminate the influence of noise targets to the edge detection results. In the second stage, a CNN model is employed to classify the results of edge detection. Through the analysis of abundant images of sleepers with cracks, it is proved that the cracks detected by the neighborhood range algorithm are superior to those detected by Sobel and Canny algorithms, which can be classified by proposed CNN model with high accuracy.

Smartphone-based structural crack detection using pruned fully convolutional networks and edge computing

  • Ye, X.W.;Li, Z.X.;Jin, T.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.141-151
    • /
    • 2022
  • In recent years, the industry and research communities have focused on developing autonomous crack inspection approaches, which mainly include image acquisition and crack detection. In these approaches, mobile devices such as cameras, drones or smartphones are utilized as sensing platforms to acquire structural images, and the deep learning (DL)-based methods are being developed as important crack detection approaches. However, the process of image acquisition and collection is time-consuming, which delays the inspection. Also, the present mobile devices such as smartphones can be not only a sensing platform but also a computing platform that can be embedded with deep neural networks (DNNs) to conduct on-site crack detection. Due to the limited computing resources of mobile devices, the size of the DNNs should be reduced to improve the computational efficiency. In this study, an architecture called pruned crack recognition network (PCR-Net) was developed for the detection of structural cracks. A dataset containing 11000 images was established based on the raw images from bridge inspections. A pruning method was introduced to reduce the size of the base architecture for the optimization of the model size. Comparative studies were conducted with image processing techniques (IPTs) and other DNNs for the evaluation of the performance of the proposed PCR-Net. Furthermore, a modularly designed framework that integrated the PCR-Net was developed to realize a DL-based crack detection application for smartphones. Finally, on-site crack detection experiments were carried out to validate the performance of the developed system of smartphone-based detection of structural cracks.