Browse > Article
http://dx.doi.org/10.12989/sss.2022.29.3.421

Crack detection in concrete slabs by graph-based anomalies calculation  

Sun, Weifang (College of Mechanical and Electrical Engineering, Wenzhou University)
Zhou, Yuqing (College of Mechanical and Electrical Engineering, Wenzhou University)
Xiang, Jiawei (College of Mechanical and Electrical Engineering, Wenzhou University)
Chen, Binqiang (School of Aerospace Engineering, Xiamen University)
Feng, Wei (College of Mechanical and Electrical Engineering, Henan University of Technology)
Publication Information
Smart Structures and Systems / v.29, no.3, 2022 , pp. 421-431 More about this Journal
Abstract
Concrete slab cracks monitoring of modern high-speed railway is important for safety and reliability of train operation, to prevent catastrophic failure, and to reduce maintenance costs. This paper proposes a curvature filtering improved crack detection method in concrete slabs of high-speed railway via graph-based anomalies calculation. Firstly, large curvature information contained in the images is extracted for the crack identification based on an improved curvature filtering method. Secondly, a graph-based model is developed for the image sub-blocks anomalies calculation where the baseline of the sub-blocks is acquired by crack-free samples. Once the anomaly is large than the acquired baseline, the sub-block is considered as crack-contained block. The experimental results indicate that the proposed method performs better than convolutional neural network method even under different curvature structures and illumination conditions. This work therefore provides a useful tool for concrete slabs crack detection and is broadly applicable to variety of infrastructure systems.
Keywords
anomalies evaluation; concrete slabs; crack detection; high-speed railway;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Ma, J., Sun, L., Wang, H., Zhang, Y. and Aickelin, U. (2016), "Supervised anomaly detection in uncertain pseudoperiodic data streams", ACM Transact. Internet Technol., 16(1), 1-20. https://doi.org/10.1145/2806890   DOI
2 Maeda, K., Takahashi, S., Ogawa, T. and Haseyama, M. (2019), "Convolutional sparse coding-based deep random vector functional link network for distress classification of road structures", Comput.-Aid. Civil Infrastr. Eng., 34, 654-676. https://doi.org/10.1111/mice.12451   DOI
3 Ahmadlou, M. and Adeli, H. (2017), "Complexity of weighted graph: A new technique to investigate structural complexity of brain activities with applications to aging and autism", Neurosci. Lett., 650, 103-108. https://doi.org/10.1016/j.neulet.2017.04.009   DOI
4 Ai, C., Qiu, S., Zhang, A. and Wang, K.C.P. (2018), "A nonballasted rail track slab crack identification method using a level-set-based active contour model", Comput.-Aid. Civil Infrastr. Eng., 33, 571-584. https://doi.org/10.1111/mice.12362   DOI
5 Bayar, G. and Bilir, T. (2019), "A novel study for the estimation of crack propagation in concrete using machine learning algorithms", Constr. Build. Mater., 215, 670-685. https://doi.org/10.1016/j.conbuildmat.2019.04.227   DOI
6 Bilge, H., Doruk, E., Findik, F. and Pakdil, M. (2019), "Effect of fatigue crack propagation on natural frequencies of system in AISI 4140 Steel", Steel Compos. Struct., Int. J., 32(3), 305-312. https://doi.org/10.12989/scs.2019.32.3.305   DOI
7 Colla, C., Krause, M., Maierhofer, C., HoEhberger, H.-J. and Sommer, H. (2002), "Combination of NDT techniques for site investigation of non-ballasted railway tracks", NDT E Int., 35, 95-105. https://doi.org/10.1016/S0963-8695(01)00033-0   DOI
8 Xiang, J., Nackenhorst, U., Wang, Y., Jiang, Y., Gao, H. and He, Y. (2014), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., Int. J., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397   DOI
9 Luo, L., Feng, M.Q., Wu, J. and Leung, R.Y. (2019), "Autonomous pothole detection using deep region-based convolutional neural network with cloud computing", Smart Struct. Syst., Int. J., 24(6), 745-757. https://doi.org/10.12989/sss.2019.24.6.745   DOI
10 Zhuang, L., Wang, L., Zhang, Z. and Tsui, K.L. (2018), "Automated vision inspection of rail surface cracks : A double-layer", Transport. Res. Part C: Emerg. Technol., 92, 258-277. https://doi.org/10.1016/j.trc.2018.05.007   DOI
11 Woo, S. and Yeo, H. (2016), "Optimization of pavement inspection schedule with traffic demand prediction", Procedia - Soc. Behav. Sci., 218, 95-103. https://doi.org/10.1016/j.sbspro.2016.04.013   DOI
12 Nayyeri, F., Hou, L., Zhou, J. and Guan, H. (2019), "Foreground-background separation technique for crack detection", Comput.- Aid. Civil Infrastr. Eng., 34, 457-470. https://doi.org/10.1111/mice.12428   DOI
13 Liu, Z., Cao, Y., Wang, Y. and Wang, W. (2019), "Computer vision-based concrete crack detection using U-net fully convolutional networks", Automat. Constr., 104, 129-139. https://doi.org/10.1016/j.autcon.2019.04.005   DOI
14 Ou, X. Yan, P., Zhang Y., Tu, B., Zhang G., Wu, J. and Li, W. (2019), "Moving object detection method via ResNet-18 with encoder-decoder structure in complex scenes", IEEE Access, 7, 108152-108160. https://doi.org/10.1109/ACCESS.2019.2931922   DOI
15 Song, S.P. and Ni, Y.J. (2018), "Ultrasound Imaging of Pipeline Crack Based on Composite Transducer Array", Chinese J. Mech. Eng., 31, 1-10. https://doi.org/10.1186/s10033-018-0280-z   DOI
16 Wang, C., Zhou, S., Wang, B., Guo, P. and Su, H. (2016), "Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways", Geomech. Eng., Int. J., 11(6), 847-865. https://doi.org/10.12989/gae.2016.11.6.841   DOI
17 Li, H., Strauss, J. and Lu, L. (2019), "The impact of high-speed rail on civil aviation in China", Transport Policy, 74, 187-200. https://doi.org/10.1016/j.tranpol.2018.11.015   DOI
18 Zhang, A., Wang, K.C.P., Fei, Y., Liu, Y., Chen, C., Yang, G. and Yang, E. (2019), "Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces with a Recurrent Neural Network", Comput.-Aid. Civil Infrastr. Eng., 34, 213-229. https://doi.org/10.1111/mice.12409   DOI
19 Kong, X. and Li, J. (2019), "Non-contact fatigue crack detection in civil infrastructure through image overlapping and crack breathing sensing", Automat. Constr., 99, 125-139. https://doi.org/10.1016/j.autcon.2018.12.011   DOI
20 Kang, M.S., An, Y.K. and Kim, D.J. (2018), "Electrical impedance-based crack detection of SFRC under varying environmental conditions", Smart Struct. Syst., Int. J., 22(1), 1-11. https://doi.org/10.12989/sss.2018.22.1.001   DOI
21 Lu, G., Liu, J. and Yan, P. (2018), "Graph-based structural change detection for rotating machinery monitoring", Mech. Syst. Signal Process., 99, 73-82. https://doi.org/10.1016/j.ymssp.2017.06.003   DOI
22 Leaman, F., Herz, A, Brinnel, V., Baltes, R. and Clausen, E. (2020), "Analysis of acoustic emission signals during fatigue testing of a M36 bolt using the Hilbert-Huang spectrum", Struct. Monitor. Maint., Int. J., 7(1), 13-25. https://doi.org/10.12989/smm.2020.7.1.013   DOI
23 Fan, H., Cosman, P.C., Hou, Y. and Li, B. (2018), "High-speed railway fastener detection based on a line local binary pattern", IEEE Signal Process. Lett., 25(6), 788-792. https://doi.org/10.1109/LSP.2018.2825947   DOI
24 Ye, X., Jin, T. and Yun, C. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567   DOI
25 Ahmadlou, M. and Adeli, H. (2012), "Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems", Physica D: Nonlinear Phenom., 241(4), 326-332. https://doi.org/0.1016/j.physd.2011.09.008   DOI
26 Mirzaei, G. and Adeli, H. (2016), "Resting state functional magnetic resonance imaging processing techniques in stroke studies", Rev. Neurosci., 27(8), 871-885. https://doi.org/10.1515/revneuro-2016-0052   DOI
27 Sun, W., Yao, B., Zeng, N., Chen, B., He, Y., Cao, X. and He, W. (2017), "An intelligent gear fault diagnosis methodology using a complex wavelet enhanced convolutional neural network", Materials, 10(7), 1-18. https://doi.org/10.3390/ma10070790   DOI
28 Bang, S., Park, S., Kim, H. and Kim, H. (2019), "Encoder-decoder network for pixel-level road crack detection in black-box images", Comput.-Aid. Civil Infrastr. Eng., 34, 713-727. https://doi.org/10.1111/mice.12440   DOI
29 Cha, Y., Choi, W., Suh, G. and Mahmoudkhani, S. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.- Aid. Civil Infrastr. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334   DOI
30 Gong, Y. and Sbalzarini, I.F. (2017), "Curvature Filters Efficiently Reduce Certain Variational Energies", IEEE Transact. Image Process., 26(4), 1786-1798. https://doi.org/10.1109/TIP.2017.2658954   DOI
31 Xi, P., Ye, X., Jin, T. and Chen, B. (2018), "Structural performance monitoring of an urban footbridge", Struct. Monitor. Maint., Int. J., 5(1), 129-150. https://doi.org/10.12989/smm.2018.5.1.129   DOI
32 Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, Int. J., 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275   DOI
33 Sanchez, M., Atique, A., Kim, S., Romero, E. and Zielinski, M. (2013), "Exploring desiccation cracks in soils using a 2D profile laser device", Acta Geotechnica, 8, 583-596. https://doi.org/10.1007/s11440-013-0272-1   DOI
34 Sun, W., Zhou, Y., Cao, X., Chen, B., Feng, W. and Chen, L. (2020), "A two-stage method for bearing fault detection using graph similarity evaluation", Measurement, 165, 108-138. https://doi.org/10.1016/j.measurement.2020.108138   DOI
35 Wang, W., Zhang, A., Wang, K.C.P., Braham, A.F. and Qiu, S. (2018), "Pavement crack width measurement based on Laplace's equation for continuity and unambiguity", Comput.-Aid. Civil Infrastr. Eng., 33, 110-123. https://doi.org/10.1111/mice.12319   DOI
36 Wang, T., Lu, G. and Yan, P. (2020), "A Novel Statistical Time-Frequency Analysis for Rotating Machine Condition Monitoring", IEEE Transact. Indust. Electron., 67(1), 531-541. https://doi.org/10.1109/TIE.2019.2896109   DOI