• Title/Summary/Keyword: crack layer

Search Result 541, Processing Time 0.024 seconds

Damage Mechanism of Particle Impact in a $Cr_2O_3$ Plasma Coated Soda-lime Glass ($Cr_2O_3$ 플라스마 용사 코팅된 유리의 입자충격에 의한 손상기구)

  • Suh, Chang-Min;Lee, Moon-Whan;Kim, Sung-Ho;Jang, Jong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.49-59
    • /
    • 1998
  • The damage mechanism of $Cr_2O_3$ plasma coated soda-lime glass and uncoated glass by steel ball particle impact was analyzed in this study. And the shape variation of the cracks was investigated by stereo-microscope according to the impact velocity and steel ball diameter. In order to improve the damage reduction effect by $Cr_2O_3$ coating layer, crack size was measured and surface erosion state was observed for both of two kinds of specimen after impact experiment. And the results were compared with each other. The 4-point bending test was performed according to ASTM D790 testing method to evaluate the effect of coating layer for bending strength variation. As a result, it was found that the crack size of $Cr_2O_3$ coated specimen was smaller than that of uncoated one, because of the impact absorption by interior pores in the coating layer and the load dispersion by the structural characteristic of the coating layer. For the specimens subjected to the steel ball impact, the bending strength of coated specimen was higher than that of uncoated specimen.

  • PDF

Improvement of Strain and Elastic Modulus of Linerboard to Prevent Score Crack

  • Chin, Seong-Min;Choi, Ik-Sun;Lee, Hak-Lae;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.31-36
    • /
    • 2010
  • When corrugated board is folded at the severely low humidity condition, crack can occur along the scored (or creased) lines of linerboard. This phenomenon is called as score (or crease) crack. It is mainly resulted from the excessive concentration of stress on the outer layer of linerboard. To overcome score crack, many approaches including the installation of constant temperature and humidity system, displacement of low grade raw material by long and strong fibers, or application of water have been tried. We examined the effect of the weight fraction of top layer in two-ply sheet, freeness of top layer stock and wet pressing on strain and elastic modulus of sheet to prevent score crack. Lower freeness and higher press load increased the density and elastic modulus of sheet. Pressing load over the $50kgf/cm^2$, however, decreased the strain of sheet. The weight fraction of top layer had positive effect on strain as well as elastic modulus without increasing the density of sheet.

Calculation of Stress Intensity Factors Using Single-Layer Potential and Weight Function (Single-Layer 포텐셜과 가중함수를 이용한 응력강도계수의 계산)

  • 이형연;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.981-989
    • /
    • 1995
  • A new weight function approach to determine SIF(stress intensity factor) using single-layer potential has been presented. The crack surface displacement field was represented by one boundary integral term whose kernel was modified from Kelvin's fundamental solution. The proposed method enables the calculation of SIF using only one SIF solution without any modification for the crack geometries symmetric in two-dimensional plane such as a center crack in a plate with or without an internal hole, double edge cracks, circumferential crack or radial cracks in a pipe. The application procedure to those crack problems is very simple and straightforward with only one SIF solution. The necessary information in the analysis is two reference SIFs. The analysis results using present closed-form solution were in good agreement with those of the literature.

Coating technique for use with remote measurement system at elevated temperatures (고온에서 원거리 측정 시스템을 활용하기 위한 코팅기술의 응용에 관한 연구)

  • 서창민;남승훈;이해무;김용일;김동석
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.164-169
    • /
    • 2000
  • The remote measurement system(RMS) as a new experimental method is limited in its application to crack measurements at elevated temperatures because of the oxide layer on the specimen surface. Since TiAlN and Cr coating layers have a high resistance to oxidation and wear, this paper proposed a TiAlN and Cr coating technique for specimens to facilitate the measurement of crack growth behavior using RMS. To investigate the effects of the coating layer, tension and fatigue tests were carried out at room temperature and at 538$^{\circ}C$, using specimens of 1Cr-1Mo-0.25V steel. From the experimental results, it was found that the mechanical properties of the TiAlN and Cr coated specimens were similar to those of the substrate. Accordingly, the TiAlN and Cr coated layer had hardly any influence on the fatigue crack propagation.

  • PDF

Electrothermal Crack Analysis in a Finite Conductive Layer with Temperature-dependent Material Properties (온도 의존성 물성치를 가지는 유한한 전도층에서의 전기/열하중을 받는 균열의 해석)

  • Jang Yong-Hoon;Lee Sang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.949-956
    • /
    • 2006
  • The method of Greenwood and Williamson is extended to obtain a solution to the coupled non-linear problem of steady-state electrical and thermal conduction across a crack in a conductive layer, for which the electrical resistivity and thermal conductivity are functions of temperature. The problem can be decomposed into the solution of a pair of non-linear algebraic equations involving boundary values and material properties. The new mixed-boundary value problem given from the thermal and electrical boundary conditions for the crack in the conductive layer is reduced in order to solve a singular integral equation of the first kind, the solution of which can be expressed in terms of the product of a series of the Chebyshev polynomials and their weight function. The non-existence of the solution for an infinite conductor in electrical and thermal conduction is shown. Numerical results are given showing the temperature field around the crack.

Mode I and Mode II Stress Intensity Factors for a Surface Cracked in TiN/Steel Under Hertzian Rolling Contact (Hertzian 접촉하중시 TiN/Steel의 표면균열에 대한 모드 I과 모드 II 응력확대계수)

  • Kim, Byeong-Su;Kim, Wi-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1163-1172
    • /
    • 2001
  • The two dimensional problem of a layered tribological system(TiN/Steel) containing a vertical surface breaking crack and subject to rolling contact is considered in this study. Using finite elements and stress extrapolation method, a series of preliminary models are developed. Preliminary results indicate that the extrapolation technique is valid to determine Modes I and II stress intensity factors for cracks. In the case of TiN/Steel medium, KI and KII were determined for variations in crack length, layer thickness, and load location. The results show that KII reaches maximum values when the contact is adjacent to the crack where Mode I stresses are compressive. KII values decrease with decreased crack length and significantly decrease for reduced layer thickness.

Application of Coating Technique for Measurement of Elevated Temperature Fatigue Crack Growth Behavior (고온 피로균열 성장거동 관찰을 위한 코팅기술의 응용)

  • 남승훈;김용일;서창민;김동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.60-66
    • /
    • 2002
  • The remote measurement system(RMS) as a new experimental method is limited in its application to crack measurement at elevated temperatures because of the oxide layer on the specimen surface. Since TiAIN and Cr coating layers have a high resistance to oxidation and wear, this paper proposed a TiAIN and Cr coating technique for specimens to facilitate the measurement of crack growth behavior using RMS. To investigate the effects of the coating layer, tension and fatigue tests were carried out at room temperature and at $538^{\circ}C$. The test material was 1Cr-1Mo-0.25V steel which is widely used as a turbine rotor material. From the experimental results, it was found that the mechanical properties of the TiAIN and Cr coated specimens were similar to those of the substrate. Accordingly, the TiAIN and Cr coated layer had hardly any influence on the fatigue crack propagation.

Stress Intensity Factors for an Interlaminar Crack in Composites under Arbitrary Crack Surface Loadings (임의의 균열표면 하중을 받는 복합채 중앙균열의 응력세기계수)

  • Lee, Gang-Yong;Park, Mun-Bok;Kim, Seong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.901-909
    • /
    • 1996
  • A model is constructed to evaluate the stress intensity factors(SIFs) for composites with an interlaminar crack subjected to as arbitrary crack surface loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is solved numerically and the mode I and II SIFs are evaluated for various shear modulus ratios between each layer, crack length to layer thickness, each term of crack surface polynomial loading and the number of layers. The mode I and II SIFs for the E- glass/epoxy composites as well as the hybrid composites are also evaluated.

Fracture Behavior of a Ductile Layer Sandwiched by Stiff Substrates;Finite Element Analysis (강성모재에 끼워진 얇은 연성층의 파괴거동;유한요소해석)

  • Kim, Dong-Hak;Gang, Gi-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2078-2086
    • /
    • 1999
  • Fracture behaviors of an interface crack in a ductile layer sandwiched by rigid substrates are analyzed by finite element method. Several fracture mechanisms and the corresponding criteria are examined. And the crack growth behavior and fracture toughness are predicted. As the results, various crack growth procedures such as the crack jump to the other interface on the opposite side, the creation of a new crack far from the initial crack front, and the asymmetric relation of fracture toughness vs. mode mixity ($J_c$-$\Phi$) can be successfully explained.

Transient Response of a Crack in a Functionally Graded Piezoelectric Strip between Two Dissimilar Piezoelectric Strip (두 개의 서로 다른 압전재료층 사이의 기능경사압전재료 접합층 내부 균열에 대한 과도응답 해석)

  • Shin, Jeong Woo;Lee, Young-Shin;Kim, Sung Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.206-213
    • /
    • 2013
  • Transient response of a crack in a functionally graded piezoelectric material (FGPM) interface layer between two dissimilar homogeneous piezoelectric layers under anti-plane shear is analyzed using integral transform approaches. The properties of the FGPM layer vary continuously along the thickness. Laplace and Fourier transforms are used to reduce the problem to two sets of dual integral equations, which are then expressed to the Fredholm integral equations of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGPM to show the effects on electric loading, gradient of the material properties, and thickness of the layers. Computed results yield following conclusions: (a) the DERR increases with the increase of the gradient of the material properties of the FGPM layer; (b) certain direction and magnitude of the electric impact loading impedes crack extension; (c) increase of the thickness of the FGPM layer and the homogeneous piezoelectric layer which has larger material properties than those of the crack plane are beneficial to increase of the resistance of transient fracture of the FGPM layer.

  • PDF