• Title/Summary/Keyword: crack growth stress ratio

Search Result 221, Processing Time 0.02 seconds

Numerical Analysis of Crack Growth Using a Crack Closure Model (균열닫힘모델을 이용한 수치해석)

  • 최동호;최항용;이준구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.365-372
    • /
    • 2001
  • This study is concerned with the application of an analytical model of cyclic crack growth that includes the effects of crack closure. The crack closure model is based on the Dugdale model and the strip model, considering the plasticity-induced closure which is caused by residual plastic deformation remaining in the wake of an advancing crack. This study is performed to get the relation between crack growth and crack opening stress with the constant stress ratio, and the relation between stress ratio and crack opening stress with the constant maximum stress under constant-amplitude loading. Under constant-amplitude loading, the crack opening stress is conversed the constant value as a crack grows and is proportion to both the stress ratio and the maximum stress. The crack closure effect, however, is decreased in the positive stress ratio and disappeared at about 0.7. The crack growth analysis using the crack closure model shows that the influence of stress ratio is minimized in the relation between crack growth ratio and effective stress intensity range specially at the negative stress ratio.

  • PDF

Fatigue Crack Growth Equation considered the Effect of Stress Ratio (응력비의 영향을 고려한 표면피로균열의 균열성장식)

  • 강용구;김대석
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.39-49
    • /
    • 1998
  • In this work, fatigue tests by axial loading were carried out to investigate the effect of stress ratio on the growth behaviors of surface fatigue crack for SM45C steel and Al 2024-T4 alloy. The growth behaviors of surface crack have been monitored during fatigue process by measuring system attached CCTV and monitor. When the growth rates of surface crack were investigate by the concept of LEFM based on Newman-Raju's .DELTA.K, the dependence of stress ratio appears both SM45C steel and Al 2024-T4 alloy. Therefore, modified stress intensity factor range, .DELTA.K' [=(1+R)/sup n/.DELTA.K] are intorduced to eliminate the dependence of stress ratio. Using .DELTA.K', it is found that the dependence of stress ratio disappears both SM45C steel and Al 2024-T4 alloy.

  • PDF

Effect of Specimen Size on Fatigue crack Growth Rate in Steels (강재의 피로균열전파율에 미치는 시험편 크기의 영향)

  • 안석화
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • This paper describes the effect of specimen size on fatigue crack growth rate for the offshore structural high-tensile-strength steel BS4360 and machine structural steel SM45C. The purpose of the present study is to investigate the effect of stress ratio aspect ratio specimen width and specimen thickness of the fatigue crack growth behavior. Compact tension specimens with a LT orientation for BS4360 and SM45C steels were used, All testing was done at constant stress intensity factor range controlled fatigue crack growth condition. The investigation demonstrates that the fatigue crack growth rate is increased with increasing stress ratio and specimen thickness and is decreased with increasing specimen width. The fatigue crack growth rate is unaffected by aspect ratio until a/W=0.50 but is increased by increasing spect ratio from a/W=0.55.

  • PDF

A Study on Fatigue Crack Growth Behavior of Steel Using AE (AE을 이용한 강의 피로균열전파 거동에 관한 연구)

  • Chung, K.Y.;Kim, S.J.;Kim, Y.S.;Oh, M.S.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.50-56
    • /
    • 2001
  • In this study, the effect of specimen thickness and stress ratio on fatigue crack growth in S45C steel was investigated. Acoustic emission was monitored during the fatigue crack growth test. Both crack closure and AE technique were used in assessing fatigue crack growth behavior. Constant amplitude loading tests were performed on CT type specimen with three different thicknesses and stress ratios. Crack closure was investigated to explain the influence of specimen thickness and stress ratio on the fatigue crack growth in the second growth region. The crack closure effect was decreased with specimen thickness and stress ratio.

  • PDF

A Model Estimating the Ratigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress ratio (응력비의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.82-89
    • /
    • 1994
  • In this paper the effect of stress ratio on the fatigue crack growth rate of aluminum alloy A5083-O was examined. The fatigue tests were carried out using CCT (center cracked tension) specimens and CT(compact tension) specimens which were subjected to 0.5 and -1.0 stress ratio respectively. The obtained results are as follows; 1) The $\DeltaK_{th}$ as the function of stress ratio R was introduced in evaluating the fatigue crack growth rate of A5083-O. 2) A new model evaluating the effect of stress ratio on the fatigue crack growth rate was developed over the region of low and high propagation rate.

  • PDF

A study of Fatigue Crack Growth Behavior and Crack Closure in 5083-O Aluminum Alloy (5083-0 알루미늄合金의 疲勞균열進展 擧動과 균열닫힘에 관한 硏究)

  • 박영조;김정규;김일현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.208-214
    • /
    • 1986
  • To establish the evaluation of the fatigue crack growth behavior in 5083-O aluminum alloy, constant load-amplitude fatigue crack growth tests were carried out under the small scale yielding conditions. Crack length and closure of this material were measured by the compliance method using a clip-on gage. The main results obtained as follows: The fatigue crack growth rate against stress intensity factor range .DELTA.K exhibits the trilinear form with two transitions at the growth rate 5.5*10$^{-6}$ and 5.5*10$^{-5}$ mm/cycle, in the so-caled Region II. The trilinear form appears still in the plot of growth rate versus effective stress intensity factor range .DELTA. $K_{eff}$. Stress ratio R affects the relationship of crack growth rates versus .DELTA.K but does not affect the reation of crack growth rate versus .DELTA. $K_{eff}$. The experimental results indicate that the effective stress intensity range ratio U depends on the maximum stress intensity factor $K_{max}$, but not on the stress ratio R.o R.R.

Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Pipe Weldments (A106 Gr B강 배관용접부의 잔류응력해석 및 피로균열성장특성)

  • 김철한;배동호;김복기;조선영;홍정균;이범노
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.237-240
    • /
    • 1999
  • In this study, residual stresses of the weldment were calculated by finite element analysis(FEA) and experiment. And, the crack closure behaviour and fatigue crack growth characteristics in field of residual stress of A106 Gr B steel pipe weldment were investigated under various stress ratio. Obtained results are as follows. I) $K_{op}$ was independent of $K_{max}$, and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure. and 3) Neglecting crack closure behaviour, actual fatigue crack growth rate can be underestimated' and Actual fatigue crack growth rate can be overestimated by $K_{res}$, in tensile residual stress field.

  • PDF

Short Crack Analysis by Fatigue Crack Opening Behavior (피로균열개구거동을 이용한 짧은균열의 거동 분석)

  • Song, Sam-Hong;Lee, Kyeong-Ro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.136-144
    • /
    • 1997
  • The characteristics of fatigue crack growth subject to out-of-plane bending fatigue are studied in terms of crack opening behavior by using pre-cracked smooth specimens. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many date using strain gages during experiment. The results of the short crack and the long crack arranged by crack closure concept show that the effective stress gange ratio of short crack is grester than that of long crack, and ano- malous growth behavior of short crack may be elucidated by the variation of crack opening stress. When the variation of fatigue crack growth rate is arranged versus effective stress intensity factor range. Iinear relation is held also for the short crack. It shows that growth behavior of short crack can be quantitatively represent- ed by the fracture mechanics parameter using effective stress intensity factor range.

  • PDF

A Study on the Stress ratio affect on the Fatigue Crack Characteristics of Pressure Vessel SA516 Steel at Low Temperature (저온 압력용기용 SA516강의 응력비에 따른 피로크랙 전파특성에 관한 연구)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1228-1236
    • /
    • 2001
  • In this study, CT specimens were prepared from ASTH A5l6 steel which was used for pressure vessel plates for moderate and lower temperature service. And we got the fellowing characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$ , $-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the Threshold stress intensity factor range ΔAKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\DeltaK$ in the stable of fatigue crack growth (Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN-$\Delta$K in Region II that is, the fatigue clack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

Effect of Stress Ratio on Fatigue Crack Growth in Mixed Mode(I+II) (혼합모드(I+II)에서 피로균열진전에 미치는 응력비의 영향)

  • Gong, Byeong-Chae;Choi, Myoung-Su;Kwon, Hyun-Kyu;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.90-96
    • /
    • 2009
  • The loading condition of actual construction works is complex. The shear effect of mixed-mode load component are crack propagation mechanism in step larger than the crack initial mechanism. Therefore, in this study received a mixed-mode loading on fatigue crack stress ratio on crack propagation path and speed of progress to learn whether stress affects crack propagation. ${\Delta}$ P a constant state of fatigue tests in Mode I, II give the same stress ratio, frequency 10Hz, sinusoidal waveform was used. A lower stress ratio fatigue crack propagation angle is small. This is less affected by the Mode II. Therefore, a mixed-mode fatigue crack propagation is to progress by the Mode. Stress ratio in a mixed mode crack in the path of progress and found a lot of impact.

  • PDF