• Title/Summary/Keyword: crack growth rate

Search Result 592, Processing Time 0.022 seconds

Fractographic Analysis Method of Fatigue Fracture Surface under Program and Random Loading for Aluminum Alloy (알루미늄 합금의 랜덤하중 하에서 발생한 피로파면 해석 방법)

  • 김상태;최성종;양현태;이희원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2055-2060
    • /
    • 2003
  • Striation is a typical pattern observed on the fatigue fracture surface and the spacing is known to correspond to a macroscopic fatigue crack growth rate, and many models for the predict in the formation of such striation have been proposed. However, these theories and methods can't be applied under random loading spectrum. In this study, the fatigue tests were carried out on aluminum alloy under random loading spectrum. The fatigue fracture surfaces were observed in the scanning electron microscope (SEM) and great quantities of SEM micrographs were synthesized and saved in computer system. The space and morphology of several large-scale striations, which are expected to from at the relatively greater load range in loading block, were observed. The crack length for each loading blocks was decided in consideration of regularity and repetition of those striations. It is shown that the applicability of fractographic methods on the fatigue fracture surface under random loading spectrum.

A Study on Fatigue Strength Influence of Surface Treatment on High Strength Steel SNCM8 (고장력강 SNCM8재의 표면처리에 따른 피로강도 변화)

  • 강신현;차정환;배성인
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.697-703
    • /
    • 1996
  • Fatigue strength of high strengthsteels are variable with many different surface treatment. It is well known that residual compressive stress retard fatigue crack growth rate(or arrest crack). High strngth steels are manufactured by following process. Heat treatment, shot peening and chromium plating process. High strength steel(HRC40 or above) which are subjected to fatigue load and dynamic load, chromium plated parts shall be peened in accordance with requirements and baked after plating. The purpose of this paper is to compare and discuss the influence of surface treatment and hydrogen embrittlement on fatigue strength of high strength steel. Therefore, fatigue test was performed to investigate influence of surface treatment. The results shows that shot peening is very effect method in creasing fatigue life and after plating, baking process is essential to prevent hydogen failure. In this paper, the experimental investigation is made to clarify the influence of shot peening conditions and baking process on fatigue strength of high strength steel.

  • PDF

Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT specimen Using Finite Element Method (유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon;Cho, Myoung-Rae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.603-608
    • /
    • 2001
  • Recently, cold expansion of fastener holes is commonly used in the aerospace industry to increase the fatigue endurance of airframes. Cold expansion process is used as the retardation of crack initiation in the hole. This treatment leads to an improvement of fatigue behavior due to the compressive residual stresses developed on the hole surface. The residual stress profile depends on the cold expansion ratio. In the present paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen. It is further shown that residual stress increases in proportion to cold expansion ratio. It is thought that crack growth rate increases as cold expansion ratio.

  • PDF

A Study on the Dynamic Fracture Toughness of Welding Structural Steels by Instrumented Impact Testing (계장화 충격시험법에 의한 구조용강 용접부의 동적 파괴인성에 관한 연구)

  • 김헌주;김경민;윤의박
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.42-51
    • /
    • 1993
  • In this study, investigations were conducted in calculating parameters of elastic-plastic fracture mechanics using single specimen. The validity of these testing methods was judged by the confirmation of multiple specimen method of stop block test. The results were as follows: In order to measure a fracture toughness using the instrumented impact test, two general requirement must be considered; One, setting up proper impact velocity considered the effect of loading and the other, the necessity of low blow test for obtaining true energy by the compliance correction. It was possible to detect a crack initiation point by calculating the compliance changing rate from a load-defection curve. Criterion of a stable crack growth, $T_{mat}$ could be estimated by using key-curve method for a base metal. and combining Kaiser's rebound compliance with Paris-Hutchison's $T_{appl}$ equation for the brittled zone of welding heat affected.at affected.d.

  • PDF

A Study of fracture Mechanics Analysis Methodology for Stress Corrosion Cracks in Pressure Component Weld feints

  • Park, June-soo;Kim, Jong-Min;Pak, Jai-hak;Jin, Tae-eun
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.216-218
    • /
    • 2003
  • A fracture mechanics analysis methodology for stress corrosion cracks (SCCs) existing in the Alloy 600 nozzle weld joint for control rod drive mechanisms (CRDMs) of pressurized water reactor is studied. Effects of weld residual stresses on the sub-critical crack behavior during the reactor operation are investigated by a fracture mechanics analysis, which is combined with the finite element alternating method. It is found that effects f the residual stresses on the stress intensity factor (SIF) and crack growth rate (CGR) are dominant and values of SIF and CGR of cracks in the region of weld joint are increased by a factor of three or more on an average.

  • PDF

Finite Element Analysis for Cracks in Rubber Bonded to a Rigid Material (강체와 접합된 고무의 균열에 대한 유한요소해석)

  • 김창식;임세영
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.111-120
    • /
    • 1994
  • Cracks in rubber bonded to a rigid material such as steel are analyzed with the aid of a mixed finite element technique. Firstly the weak form is derived for finite element analysis of an incompressible material, and the Mooney-Rivlin form is assumed for the constitutive modeling of rubber. The numerical results from finite element analysis is examined to confirm the accuracy and convergence of solution by way of comparison to other numerical results. The interpretation of the J-integral for large elastic deformation as the energy release rate is confirmed, and the J-integral is calculated for varing crack length. The crack growth stability is discussed using the result of finite element analysis.

  • PDF

Optimum Design of the CT Type Plate with Varing Thickness (CT형 변후보강재의 최적 설계)

  • 석창성;최용식
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.1
    • /
    • pp.5-13
    • /
    • 1991
  • Fail-safe design of machine elements or structural members is very aim of the whole mankind. Fracture occurs generally from cracks that exist originally or produced from flaws. The most important job we have to do is to make stopping or decreasing the crack growth rate. For fail-safe design variable thickness plates have been used as structural members in practical engineering services. In this paper, optimum design of CT type plate with varlng thickness is studied with the theoritical analysis. The theoritical analysis was based on the stress concentration and nominal stress analysis. From the study, the optimum design curve was determined for use of designing of such structures using the computer analysis program of optimum design.

  • PDF

A Fracture Mechanics Study on the Fatigue Crack Propagation of the Pressure Vessel Pad Weldment (압력용기 패드부의 피로균열진전에 관한 파괴력학적 연구)

  • 차용훈;김하식
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.10-15
    • /
    • 1996
  • In studying the fatigue strength of fillet welded the section of pressure vessel pad, this study was to evaluate the effect of weld toe notch and to compare the results of numerical analysis with the results of fatigue experiments of fillet welded A5l6 grade 60 steel specimens. The fatigue life for the Bead welded specimen was about 1.4 times as much it as the 1Pad welded specimen. Also, The fatigue life for the 2Pad welded specimen was about 1.5 times as much it as the 1Pad welded specimen. In $da/dN-{\Delta}K$ curve, the fatigue crack growth rate for the 1Pad welded specimen appeared higher than that of the 2Pad welded specimen in the same initial region of ${\Delta}K$, had a similar Inclination In the stabled region.

  • PDF

A Study of Non-destructive Measurement on the Reinforced Concrete Structure Damaged by Reinforcing Steel Corrosion (철근콘크리트구조물의 철근부식에 대한 비파괴 측정과 부식에 따른 균열거동)

  • 김성운;정한중;김창환;임선택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.80-85
    • /
    • 1991
  • This experimental study was performed to derive the relationship between the measured values(corrosion potential) and the actual amount of corrosion products(reinforcing steel weight loss rate). Also the growth of crack due to the steel corrosion was oberved. First, the reinforcing steel of R/C specimen was corroded with chloride penetration and accelerated galvanostatic corrosion method. And then, the corrosion potential of reinforcing steel was measured with nondestructive tester.

  • PDF

A Study on the Fatigue Fracture Behavior of Heat Cycle of Welded Dissimilar (이종금속 용접재의 열 사이클에 따른 피로파괴 거동에 관한 연구)

  • 신근하;김진덕
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.59-63
    • /
    • 1993
  • It is very difficult to find not only optimized welding condition but also fatigue characteristics of the dissimilar weld. In this study. Low carbon steel (SS41) and austenitic stainless steel (STS304) were welded by GTAW welding with STS309 stainless wire rod and Single Edge Notch specimens were used for the examination of fatigue behavior on welding heat cycle. The fatigue crack growth rate in HAZ of SS41 was the highest. The second was in STS304 bond line and the lowest was in HAS of STS304.

  • PDF