• Title/Summary/Keyword: crack growth characteristics

Search Result 293, Processing Time 0.024 seconds

A Study on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature. (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.147-153
    • /
    • 2000
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, 150C, 250C and 370C with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range ΩK was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in ΩK. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

A Study on Fatigue Crack propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.105-110
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, 150C, 250C and 370C with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range ΔK was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in ΔK. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperature are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

A Study on Corrosion Fatigue Properties of Welded Joints for TMCP High Strength Steels (TMCP 고장력강 용접부의 부식도영 특성에 관한 연구)

  • 이택순;이휘원;김영철
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.14-23
    • /
    • 1996
  • The corrosion fatigue test were carried out to evaluate the fatigue characteristics of accelerated cooled (ACC) TMCP high tensile strength steels and weld joint with high heat input by one side one run submerged are welding. In this paper, the fatigue crack growth behaviors were investigated with the center crack tension specimen of base metal and heat affected zone in substitute sea water and air, respectively Main results obtained are sunnarized as follows: 1. The fatigue crack growth rates in sea water faster than those in air environment for the different heat input values, crack growth rate of base metal is very fast and effect of heat input is not remarkable. 2. In HAZ (82kJ/cm, 116kJ/cm), the crack branching phenomena were observed in both air and sea water environment, 3. In SEM observation, the corrosion effect on base metal was larger than that on HAZ in corrosion environment.

  • PDF

An Extension Behavior of an Interface Kinked Crack by CED (CED에 의한 계면굴절균열의 진전거동)

  • 권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 1996
  • The characteristics on the extension of the CED(Crack energy density) concept to the interface kinked crack problems in a dissimilar material are examined. Each mode contributions of CED are found by symmetric and antisymmetric components and domain independent integrals. Finite element calculation is carried out to simulate the Interface kinked crack growth on bimaterial. The focus is the establishment of fracture criterion with CED and finding the orientation of crack extension. From the results, a prediction about the extension behavior of an interface kinked crack can be done. And we show that CED can be a parameter to indicate fracture criterion at an Interface kinked crack.

  • PDF

A study on the crack characteristics of the Synthetic Fiber reinforced Soil (섬유 보강토의 균열 특성 연구)

  • 송창섭;이신호;반창현;인현식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.431-437
    • /
    • 1998
  • This study was performed to ascertain the three-dimensional effect of the crack reduction and the restrained effect of crack growth, and to yield a suitable mixing ratio of the synthetic fiber reinforced soil. The results of the study are as follows ; 1) The synthetic fiber has the resisting force for crack because of the adhesion due to the attraction of soil particles. 2) As the synthetic fiber length and the mixing ratio are increased, mono filament synthetic fiber reinforced soil is increased the effects of crack reduction and the restraint of crack growth. 3) The fibrillated synthetic fiber is more effective than mono filament synthetic fiber for crack. 4) A suitable mixing ratio of synthetic fiber reinforced soil is 0.5% of the fibrillated synthetic fiber.

  • PDF

A Study on the Crack Characteristics of the Syntetic Fiber Reinforced Soil (섬유 보강토의 균열 특성 연구)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.59-65
    • /
    • 1999
  • This study has been performed to confirm the three dimensional effect of the crack reduction and the restrained effect of crack growth for the synthetic fiber reinforced soil. Two types of polyrpropylene fiber and low plastic clay(CL) were used for the test. And the test variable were fiber length and so on. The results of the study were summarized as follows ; 1) The mixing of synthetic fiber was effective in reducing crack growth due to adhesion between soil partlcles and synthetic fiber.l Especially initlal crack was delayed, as compared with the pure soil, for about 1 day in case of mono filament synthetic fiber and for about 1 or 2 days in case of fibrillated syntetic fiber. 2) As the content and length of synthetic fiber were increased , the effect of crack reduction was increased. It was found that 0.5% fibrillated synthetic fiber with 40mm length reinforced soil had about 3 times more effective than natural soils. 3) In case of the same fiber content and fiber length, the fibrillated synthetic fiber has nmore effective than the mono filament synthetic fiber for crack reduction.

  • PDF

A study on the characteristics of corrosion-fatigue-crack propagation in the welded parts of high tensile steels under sea water (고장력강 용접부의 해수중 부식피로균열 성장특성에 관한 연구)

  • 김영식;박무창
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.113-122
    • /
    • 1987
  • Ships and offshore strrctures are exposed to the corrosive surroundings, and the extablishment of the design criteria and the elucidation on the influence by this environment are requested to maintain the safety and to demonstrate the function of the structure. In this paper, the fatigue-crack-growth behavior on the compact tension specimens of quenched, tempered HT80 grade steels and RA36 high tensile steels having a single edge fatigue cracked notch respectively, were investigated under the repeated tensile stress with constant stroke in sea water for the welded parts by shielded metal arc welding. Main results obtained are summerized as follows; 1. The fatigue-crack-growth rates da/dN in sea water appeared to be greater behavior than those in air environment at the same stress intensisy factor range \DeltaK. 2. The correlation data of da/dN\DeltaK of the two kinds of high tensile steels in sea water showed no great difference, however, the correlation data of da/dN\DeltaK/σy(σy stands for yield strength of the material) showed that the fatigue-crack-growth behavior of RA36 plate is affected by active path corrosion(APC) mechanism, while that of HT80 grade plate is mainly affected by hydrogen embrittlement mechanism.

  • PDF

Prediction and Application of Fatigue Life on Characteristics of Fatigue Crack Propagation of Thin Sheet Alloy (박판합금재료의 피로균열 전파특성에 대한 피로수명예측과 활용)

  • Lee, Ouk-Sub;Kim, Seung-Gwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.103-109
    • /
    • 2007
  • In fatigue life prediction, it is important that fatigue life is affected by crack closure phenomenon in thin sheet Al alloy. In this research, we attempt to (1)analyze the characteristics of fatigue crack propagation in constant loading condition for thin sheet Al 2024-T3 alloy which is generally used in transportation structures, (2)identify the crack closure phenomenon in thin sheet comparing experimental results of thin and thick sheet specimen under same fatigue loading condition. In using the fatigue related material constants from these fatigue crack propagation analysis, we attempt to (3)operate the fatigue life estimating process with considering crack closure phenomenon and (4)analyze the experimental and prediction results of fatigue life in thin sheet Al alloy.

A Study on the Fatigue Strength Evaluation of Sintered Spur Gears (소결치차의 피로강도평가에 관한 연구)

  • Lyu, Sung-Ki;Katsmi, Inoue
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.106-112
    • /
    • 1999
  • It is very important to have exact informations on the properties and characteristics of the sintered steel as a new material of machine elements. The bending fatigue tests are performed for the sintered steel bend specimens of various densities 6.6 to 7.0 g/cm3 and the sintered spur gear to consisted of Fe-Cu-C. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. Consequently, the S-N curves are obtained. The fatigue strength S for fatigue life N of the specimen with the initial length of crack ai is simulated, and they are shown as N-S-A curves. This study investigate the crack growth characteristics by experiments and present crack growth simulation method for sintered gear

  • PDF

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.