• Title/Summary/Keyword: crack control

Search Result 723, Processing Time 0.033 seconds

Experimental Study on Flexural Behavior of PSC I Girder and the Effect of External Prestressing (PSC I합성 거더의 휨 거동 및 외부 강선 보강효과에 관한 실험 연구)

  • Lee, Byeong-Ju;Park, Jae-Guen;Kim, Moon-Young;Shin, Hyun-Mock;Park, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.755-762
    • /
    • 2007
  • For the evaluation of the load carrying capacity of the deteriorated PSC I girder bridge in service load state and the verification of the grade to the reinforcement effect of actual bridge strengthened by external prestressing tendons, the field test using vehicles is applied widely. Because this teat was executed in elastic range, the investigation of the characteristics of behavior caused by live load is only available. And it is impossible to estimate load carrying capacity in limit state and nonlinear behavior after that a crack is appeared. In this study, the 27-year-old prestressed concrete girder bridge is used and various load tests are performed, so we evaluate the behavior characteristics of the bridge in service load state and ultimate load state, and estimate the load carrying capacity of bridge. In addition, the artificial damages are induced from cutting internal tendons, and external tendons is added to strengthen it as much as vanished internal tendons. Next we compare the damage state with the strengthening state. In case of the application of external prestressing method to PSC I girder bridge, the present experiment result may decide more exactly the load carrying capacity of actual bridge, the amount for reinforcement, and the standard of quality control etc. at reinforcement work.

Failure Modes of RC Beams with High Strength Reinforcement (고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드)

  • Yoon, Seok-Kwang;Lee, Su-Chan;Lee, Do-Hyeong;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

Detailed Deterioration Evaluation and Analysis of Conservation Environment for the Seosanmaaesamjonbulsang (Rock-carved Triad Buddha in Seosan), Korea (서산마애삼존불상의 정밀 손상도 평가와 보존환경 분석)

  • Lee, Sun-Myung;Lee, Chan-Hee;Kim, Ji-Young
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.277-294
    • /
    • 2010
  • The Seosanmaaesamjonbulsang (National Treasure No. 84) consists of light gray and coarse to mediumgrained biotite granite with partly developed pegmatite and quartz vein. The host rock is divided into dozens of rock blocks with various shape along irregular discontinuity plane. The evaluation results of discontinuity systems reveal that the host rock were exposed to instable sloping environments. Results of deterioration diagnosis show that the degree of damage has been made worse by physical weathering and surface discoloration laying stress on part that vertical and horizontal joints are massed. Generally, deterioration rate of the triad Buddha surface cover with 42.7%, however, the rate of physical weathering and surface discoloration are subdivided to 9.6% and 33.1%, respectively. Ultrasonic measurements indicate that the triad Buddha was reached highly weathered grade in general. And the rock material was weaken to show low velocity zone of 1,000m/s along irregular joint systems. Indoor and outdoor mean relative humidity of the shelter was recorded more than 70% during every season, and high frequency appears in high relative humidity range over 95%. Such environments seem to have produced dew condensation on the rock surface with rainfall and supply water, promoted physical, chemical and biological weathering along crack and joint, resulting in high permeation of water and percentage of water content. Therefore, it is judged that for scientific conservation of the triad Buddha it needs environment control through persistent preservation environment monitoring including water problem.

Experimental Investigation on Cracks and Defects of a Valve Sealing Components for a LPG Cylinder (LPG 용기용 밸브의 밀봉부품 크랙 및 결함에 관한 실험적 고찰)

  • Kim, Chung-Kyun;Lee, Byung-Kwan;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.23-28
    • /
    • 2007
  • This paper presents an experimental investigation on the sealing defects and cracks of O-rings and a valve packing of a gas valve for a LPG cylinder. O-ring in which stops a gas leakage of a liquefied petroleum gas is very important for a LPG valve safety. Valve packing is to open and close a gas flow port for supplying and charging a LPG fuel. The sealing performance of two sealing units ism related to the leak safety and long lift of a gas valve. The investigated results show that most of O-rings was failed due to a circumferential crack in which is caused by partial press bonding failure near the partition zone and an excess compression rate. Some of the O-ring failure was originated by an extrusion of an excessive leak pressure of a LP gas. Thus, this paper strongly recommends a tight quality control and a safety guarantee system of O-rings and valve packing to guarantee a leak safety and to extend a service lift of a gas valve. At the end, a warranty policy of the sealing units should be adopted for increasing a product quality and safety of a gas valve.

  • PDF

A study on the slip-up speed of a shaft using heating slip form (히팅슬립폼을 적용한 수직구 구조물의 상승속도에 관한 연구)

  • Ko, Eomsik;Lee, Sanghun;Park, Jongpil;Zi, Goangseup;Kim, Changyong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.811-823
    • /
    • 2019
  • Slip form method is applied to many cases of a shaft these days because it is safer, more economical and faster than cast-in-place method. Slip-up height of the method is approximately 2.5 to 4.0 m/day. If the temperature of concrete is outside the range of 10 to 30℃, the effects of changes in strength or elastic characteristics are significant. Therefore, it is difficult for slip-up speed to be higher than 3 m/day during winter construction. In addition, concrete has heat caused by hydration, which causes temperature cracking of hardened concrete. Therefore, temperature control of concrete curing is necessary for the continuous slip-up of slip form. In this study, the rebound hardness, time of ultrasonic waves propagation, heat of hydration, and external temperature are measured by developing heating panels and test devices for the continuous slip-up. Based on this, heating slip form is manufactured; this was applied to "Kimpo sites" and "Sinwol sites". The compared slip-up speed samples were 1.9 m/day or 0.200 m/hr on average at Gimpo sites (08:00~17:30) and 2.0 m/day or 0.210 m/hr at Sinwol sites.

A Study on the Application of Very Rapid Hardening Acrylic Polymer Modified Concrete for Bonded Concrete Overlay Method (접착식 콘크리트 덧씌우기 공법을 위한 초속경 아크릴계 폴리머 개질 콘크리트의 적용성 연구)

  • Lee, Seung-Woo;Kim, Young-Kyu;Lee, Poong-Hee
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.139-148
    • /
    • 2011
  • Asphalt concrete overlay method is used by general maintenance and rehabilitation of construction for aged concrete pavement in Korea. However, in case of the AC overlay method to extend service life of the existing concrete pavements, various distresses of reflection crack, pothole and rutting are the typical problems of the asphalt overlay on existing concrete pavement since it has different physical characteristics between asphalt overlay and existing concrete pavement. To achieve this, application of concrete overlay method is required instead of AC overlay method. Concrete overlay method has advantages that can reduce maintenance cycle and costs since it has excellent bearing value for heavy vehicles and no rutting. However, technical problems of detour road construction, traffic control and other disadvantages happened by long curing time. Thus, in this study and experimental research were launched to evaluate the workability, durability and resistance against environmental loading of Very Rapid Hardening Acrylic Polymer Modified Concrete(VRH-APMC) for application of bonded concrete overlay method. Test results showed that the compressive and bond strength were exceed 21MPa and 1.4MPa of target strength after four hours for rapid traffic opening properties. And tests of resistance against environmental loading results showed that VRH-APMC secured excellent durability. Thus, it was known that VRH-APMC was suitable material for large scale bonded concrete overlay method, and it was possible to use maintenance and rehabilitation method which needs enough workability and rapid traffic opening.

Effects of Pulsed Nd:YAG Laser Irradiation and Fluoride Compound Applicatin on Acid Resistance of Bovine Teeth (Pulsed Nd:YAG 레이저 조사와 불소화합물 도포가 치아 내산성에 미치는 영향)

  • An-Hee Lee;Woo-Cheon Kee
    • Journal of Oral Medicine and Pain
    • /
    • v.20 no.2
    • /
    • pp.429-447
    • /
    • 1995
  • This study was designed to determine the most effective concentration of fluoride and levels of laser irradiation for the remineralization of decayed teeth. After irradiation with a pulsed Nd:YAG laser and the topical application of fluoride, phosphate and fluoride concentration in enamel were measured. And then the changes on surface enamel using an scanning electron microscope were observed. Samples by extraction healthy, permanent, mandibular bovine teeth with no caries were obtained. Among them 371 healthy samples were selected and artificial carious lesions were made. 20 samples were assigned to each experimental group. After irradiation with a pulsed Nd:YAG laser with total energy densities of 10J/$\textrm{cm}^2$, 20J/$\textrm{cm}^2$ for each group. On the teeth, 2% NaF, 1.9% NH4F, 1.6% TiF4 Elmex gel(amine fluoride) and 1.23% APF gel were applied. After pH circulatory procedures, concentrations of fluoride with and Ionalyzer (Orion Research, Model 901, USA) and phosphates with an Uv/V is spectrophotometer (Uvikon 860, Kontrom Co, Switzerland) were measured. By etching the teeth in layers and measuring fluoride concentrations, a profile of fluoride penetration according to depth could be developed. And also the changes on the surface of the enamel using an electron scanning microscope were observed. The comparative analysis yielded the following results : 1. Phosphate concentration was low in all groups compared with the control group except for teeth treated Elmex gel, irradiated with 10J/$\textrm{cm}^2$ and 30J/$\textrm{cm}^2$ energy densities. Teeth treated with APF gel and 30J/$\textrm{cm}^2$ irradiation gad the lowest phosphate concentration. 2. Among all groups, fluoride concentrations in tooth enamel were highest in APF gel and NaF groups irradiated at 30J/$\textrm{cm}^2$. The APF gel group had the highest fluoride concentrations across all energy densities. 3. In the APF gel group, and the NaF group, the greater the energy density of the laser, the higher the fluoride concentrations in the enamel. 4. In all groups, the concentration of fluoride in the enamel by depth tended to decrease with depth. 5. Under the scanning electron microscope, under the condition of irradiation with 20J/$\textrm{cm}^2$, enamel crack was detected for the first time. In the NH4F group, spherical deposits were found on the surface of the enamel, and in the TiF4 group the surface of enamel was covered with an irregular, thin membranous mass in places. In the APF gel and NaF groups irradiated with 10J/$\textrm{cm}^2$, spherical and irregular particles covered the teeth. When these groups were irradiated at 20J/cm2, they were covered with amorphous crystals. These results suggest that one could obtain more effective anticariogenic effects without damage to teeth when less than 20J/$\textrm{cm}^2$ energy densities and APF gel are used.

  • PDF

Flexural and Shear Behavior of Reinforced Dual Concrete Beam (철근 이중 콘크리트 보의 휨 및 전단 거동)

  • Park Tae-Hyo;Park Jae-Min;Kim Hee-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.401-409
    • /
    • 2005
  • In this study, reinforced dual concrete beam (RDC beam) composed of steel fiber reinforced concrete (SFRC) in the tension part and normal strength concrete (NSC) in the compression and remaining part is proposed. It is the epochal structural system that improves the overall structural performances of beam by partially superseding the steel fiber reinforced concrete in the lower tension part of conventional reinforced concrete beam (RC beam). Flexural and shear tests are performed to prove the structural excellence of RDC beam in comparison with RC beam. An analytical method is proposed to understand the flexrual behavior and is compared to experimental results. And for shear behavior, experimental results are compared to empirical equations predicting the ultimate shear strength of full-depth fiber reinforced concrete beam to examine the behavior of RDC beam under shear. From this studies, it is proved that RDC beam has more superior structural performance than RC beam, and the analytical method for flexural behavior agrees well with experimental results, and the partial-depth fiber reinforcements have no noticeable effect on ultimate shear strength but it is considerably effective to control and prevent evolutions of crack.

The Experimental Study on the Heat Hydration Properties of Concrete According to Binder Conditions (결합재 조건에 따른 콘크리트의 수화발열 특성에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.769-776
    • /
    • 2006
  • Recently, owing to the development of industry and the improvement of building techniques, concrete structures are becoming larger and higher. In hardening of these large connote structures, the heat of hydration gives rise to considerable thermal stress depending on the size and environmental condition of concrete, which might cause thermal cracking. Especially, the crack may cause severe damage to the safety and the durability of concrete structure. This study investigates the thermal properties of concrete according to several binder conditions, such as OPC, Belite rich cement(BRC), slag cement(SC), blast furnace slag(B) added cement fly ash(F) added cement and blast-furnace-slag and fly ash added cement. As a result of this study, the properly of concrete is most better BRC than others, and fly ash(25%) added cement and BFS(35%)-fly ash(15%) added cement gets superior effect in the control of heat hydration. But synthetically considered properties of concrete, workablity, strength heat hydration, etc, it is more effective to use mineral admixture. Especially, to be used Blast Furnace slag is more effective.