• 제목/요약/키워드: covering surface temperature

검색결과 72건 처리시간 0.027초

하절기 복사환경 관측을 통한 석재, 목재, 알루미늄 바닥재의 열특성 평가 (A Study of the Thermal Characteristics of Flooring Materials, Wood, Rock, Aluminum through Observation of its Radiant Environment in the Summer)

  • 최동호;이부용
    • 한국태양에너지학회 논문집
    • /
    • 제28권3호
    • /
    • pp.35-44
    • /
    • 2008
  • In this study, the experiment of the measuring of four different types of flooring materials' thermal characteristics was conducted and examined during the summer. The experimental materials were arranged on the existing slab of the roof, and then its thermal characteristics were examined from the point of view of thermal radiation analysis. The aim of this study is ultimately to draw the fundamental data for improvements in a building's thermal function and reduce the urban heat island phenomena through optimizing the thermal characteristics of the surface covering materials of a building. The results from this study are as follows; 1) Each experimental material's albedo was calculated as 0.83 on the aluminum panel, 0.40 on the rock block, 0.37 on the wood deck and 0.21 on the concrete. It shows that the concrete material, which has the lowest short wave reflective rate, absorbed the most radiation energy and the aluminium panel has absorbed the lowest radiation energy. 2) From the each experimental object's value of the long wave radiation, the concrete material measured the highest, at $628W/m^2$, and the aluminium panel measured the lowest at $412W/m^2$. Therefore, it verifies that the experimental objects' own radiation rate determines the amount of the long wave radiation. 3) The degree of energy absorbency of a building's surface covering materials is greatly influenced by its own albedo and radiation rate, Therefore, it needs to be considered for the improvements in a building's thermal function and reducing the urban heat island phenomena. 4) According to the evaluation result of the each experimental object's overall heat transmission screening function on the roof of a building, the wooden deck is proven to be an excellent material for excluding the outside temperature differences effectively with its characteristic of low heat capacity and conduction. Also its surface temperature on the roof slab and the temperature difference during the day were both measured at low.

방화석고보드의 두께 및 접착방식 변화에 따른 고강도 콘크리트의 내화특성 (Fire Resistance of High Strength Concrete followed by Thickness of Fireproof Plaster Board and Change of Adhesive Method)

  • 장기현;김원기;김호림;이진우;양성환;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.67-71
    • /
    • 2008
  • The study analyzed on fire resistance of high strength concrete followed by thickness of fireproof plaster board and change of adhesive method. In spalling characteristics after fire resistance test, all four-side covering concretes were left out of testing screens. Thus, serious spalling was happened by exposing their internal reinforcing rods. in partial testing screens, spalling was happened till the internal concrete of main reinforcing rod. Only, temperature history didn't have special differences among changes of adhesive method. However, thickness of fireproof plaster board is very important. Namely, mock member reinforcing 25mm general adhesive + Bending was 583℃ in the highest temperature of surface part and 479℃ in the highest temperature of the main reinforcing rod, which was relatively good temperature history.

  • PDF

가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용 (IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity)

  • 김재열;양동조;최철준;박상기;안연식;정계조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

연사방법에 따른 아세테이트/폴리에스터 복합사 편성물의 역학적 특성 및 3D CAD System에 의한 외관특성 (Mechanical Properties and 3D CAD Images of the Appearance of Knitted Fabric with Acetate/Polyester Composite Yarn by Different Yarn Twisting Methods)

  • 김소진;전동원;박영환
    • 한국염색가공학회지
    • /
    • 제18권1호
    • /
    • pp.33-43
    • /
    • 2006
  • The purpose of this study was to eximine the effect of different yam twisting methods on mechanical properties and 3D CAD images of plain knitted fabrics made of composite yarns. Six yams were used in this study: four different composite yams of the six consist of acetate and functional polyester (Poly-m) with the ratio of 70:30, and the rest two are the original acetate $100\%$ yam and the poly-m $100\%$ yarn. The four kinds of composite yarns were processed in combinations of twisting processes such as interlacing, false twisting, two for one twisting, combined twisting and single covering, and the two original yams were knitted without any twisting process. Sixteen mechanical properties of all the six knitted fabrics, knitted under the same knitting conditions, were measured by KES-FB system with the outer knit condition. The results were as follows; 1) When the sample applied with the false twisting process at the temperature as high as $220^{\circ}C$, ENT, B, HB, G and RC values of samples increased which leads to increasing dimensional stability. 2) To gain the high bending and shear properties in the single covering process, selecting the core yarn with such properties is the most important factor. 3) Interlacing process effected to increase RC value. 4) False twisting process after interlacing process gave bulkiness and un-interlaced part in yam was increased SMD value. The SMD value of the kilted fabric of the composite yarn, which was put through the combined twist process, was higher than those of which simple process such as the two for one twist or the single covering process applied. In order to achieve the silk-like surface feel of knitted fabric, the sin91e covering process is recommended. 5) Examining the simulation images of the knifed fabrics of composite yarn, which were generated by the 3D CAD system based on the mechanical properties of the fabric, led that appearance could be changed as different twisting methods were applied.

金屬熱處理를 위한 高溫面의 膜沸騰急冷却에 관한 硏究 (第1報, 炭素鋼 켄칭 過程의 冷却曲線과 過渡沸騰熱傳達) (A Study on the Film Boiling-Quenching Process of the Hot Surface for the Heat Treatment of Metals (1st Report, Cooling Curves and Transient Boiling Heat Transfer during the Quenching Process of Carbon Steel))

  • 윤석훈;홍영표;김경근;정대인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제15권3호
    • /
    • pp.57-65
    • /
    • 1991
  • The quenching of steels by water is one of the important problems in engineering for the applications of heat treatment or continuous casting process, but the fundamental researches by the theoretical approaches have not been satisfactorily improved yet. The very rapid cooling problems by the thermal conduction including the latent heat of phase transformation in steel and the transient boiling heat transfer of water on the surface of the steel covering from $850^{\circ}C$ to $20^{\circ}C$ are the key problems of heat treatment. The present quenching experiments are performed for the cylindrical specimens of carbon steel, S45C of diameters (12-30). Nonlinear transient heat conduction and transient boiling heat transfer problem of water on the surface of specimens is analyzed by the numerical method of inverse heat conduction problem. The conditions for the calculation are that the initial temperature of specimens is $820^{\circ}C$ and the cooling water in bath are $20^{\circ}C$,$40^{\circ}C$,$60^{\circ}C$,$80^{\circ}C$,$95^{\circ}C$ with no agitation.

  • PDF

Positional correction of a 3D position-sensitive virtual Frisch-grid CZT detector for gamma spectroscopy and imaging based on a theoretical assumption

  • Younghak Kim ;Kichang Shin ;Aleksey Bolotnikov;Wonho Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1718-1733
    • /
    • 2023
  • The virtual Frisch-grid method for room-temperature radiation detectors has been widely used because of its simplicity and high performance. Recently, side electrodes were separately attached to each surface of the detectors instead of covering the entire detector surface with a single electrode. The side-electrode structure enables the measurement of the three-dimensional (3D) gamma-ray interaction in the detector. The positional information of the interaction can then be utilized to precisely calibrate the response of the detector for gamma-ray spectroscopy and imaging. In this study, we developed a 3D position-sensitive 5 × 5 × 12 mm3 cadmium-zinc-telluride (CZT) detector and applied a flattening method to correct detector responses. Collimated gamma-rays incident on the surface of the detector were scanned to evaluate the positional accuracy of the detection system. Positional distributions of the radiation interactions with the detector were imaged for quantitative and qualitative evaluation. The energy spectra of various radioisotopes were measured and improved by the detector response calibration according to the calculated positional information. The energy spectra ranged from 59.5 keV (emitted by 241Am) to 1332 keV (emitted by 60Co). The best energy resolution was 1.06% at 662 keV when the CZT detector was voxelized to 20 × 20 × 10.

과전류에 의해 단락된 전선의 결정성장 특성에 관한 연구 (Study of the Characteristics and Crystal Growth of a shorted Wire by Overcurrent)

  • 박진영;방선배;고영호
    • 한국화재소방학회논문지
    • /
    • 제31권6호
    • /
    • pp.83-90
    • /
    • 2017
  • 전선에 정격이상의 과전류가 흐르게 되면 온도가 상승하고 전선피복이 열화되어 단락현상이 발생한다. 과전류의 크기에 따라 전선의 온도 상한치는 변화하며, 각각의 온도 상한치에서 단락이 발생할 때, 단락온도와 전선표면온도간 온도차로 인해 응고과정에서 냉각속도 차이가 발생한다. 이때 용융단면에 형성되는 수지상 조직의 패턴특징이 상이하게 된다. 본 논문에서는 과전류 크기에 따라 변화하는 전선온도의 상한치를 측정하고, 이때 단락을 발생시켜 수지상의 2차 가지 간격(Dendrite Arm Spacing : DAS)을 분석하여 수치를 정량화 하였다. 실험결과, 과전류 크기가 커짐에 따라 전선온도의 상한치는 증가하였으며, 전선온도가 높아질수록 2차 가지 간격이 증가하는 것을 확인하였다.

The Analysis of Heat Transfer through the Multi-layered Wall of the Insulating Package

  • Choi, Seung-Jin
    • 한국포장학회지
    • /
    • 제12권1호
    • /
    • pp.45-53
    • /
    • 2006
  • Thermal insulation is used in a variety of applications to protect temperature sensitive products from thermal damage. Several factors affect the performance of insulation packages. Among these factors, the thermal resistance of the insulating wall is the most important factor to determine the performance of the insulating package. In many cases, insulating wall consists of multi-layered structure and the heat transfer through this structure is a very complex process. In this study, an one-dimensional mathematical model, which includes all of the heat transfer principles covering conduction, convection and radiation in multi-layered structure, were developed. Based on this model, several heat transfer phenomena occurred in the air space between the layer of the insulating wall were investigated. From the simulation results, it was observed that the heat transfer through the air space between the layer were dominated by conduction and radiation and the low emissivity of the surface of each solid layer of the wall can dramatically increase the thermal resistance of the wall. For practical use, an equation was derived for the calculation of the thermal resistance of a multi-layered wall.

  • PDF

2016년 1월 폭설을 동반한 제주도 한파의 원인 재고찰 (Revisit the Cause of the Cold Surge in Jeju Island Accompanied by Heavy Snow in January 2016)

  • 한광희;구호영;배효준;김백민
    • 대기
    • /
    • 제32권3호
    • /
    • pp.207-221
    • /
    • 2022
  • In Jeju, on January 23, 2016, a cold surge accompanied by heavy snowfall with the most significant amount of 12 cm was the highest record in 32 years. During this period, the temperature of 850 hPa in January was the lowest in 2016. Notably, in 2016, the average surface temperature of January on the Polar cap was the highest since 1991, and 500 hPa geopotential height also showed the highest value. With this condition, the polar vortex in the northern hemisphere meandered and expanded into the subtropics regionally, covering the Korean Peninsula with very high potential vorticity up to 7 Potential Vorticity Unit. As a result, the strong cold advection, mostly driven by a northerly wind, around the Korean Peninsula occurred at over 2𝜎. Previous studies have not addressed this extreme synoptic condition linked to polar vortex expansion due to the unprecedented Arctic warming. We suggest that the occurrence of a strong Ural blocking event after the abrupt warming of the Barents/Karas seas is a major cause of unusually strong cold advection. With a specified mesoscale model simulation with SST (Sea Surface Temperature), we also show that the warmer SST condition near the Korean Peninsula contributed to the heavy snowfall event on Jeju Island.

IGRINS Spectral Library

  • Park, Sunkyung;Lee, Jeong-Eun;Kang, Wonseok;Lee, Sang-Gak;Chun, Moo-Young;Kim, Kang-Min;Yuk, In-Soo;Lee, Jae-Joon;Mace, Gregory N.;Kim, Hwihyun;Kaplan, Kyle F.;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.43.3-43.3
    • /
    • 2016
  • We present a library of high-resolution (R~45,000) and high signal-to-noise ratio ($S/N{\geq}200$) near-infrared spectra of 147 standard stars. High quality spectra were obtained with Immersion GRating INfrared Spectrograph (IGRINS) covering the full range of H ($1.496-1.795{\mu}m$) and K ($2.080-2.460{\mu}m$) bands. The targets are mainly selected as MK standard stars which have well-defined spectral types and luminosity classes, and cover a wide range of effective temperatures and surface gravities. The spectra were corrected for telluric absorption lines and absolute flux calibrated using Two Micron All Sky Survey (2MASS) photometry. We find new spectral indices in H and K bands and provide their EWs. We describe empirical relations between the measured EWs and stellar atmosphere parameters such as effective temperature and surface gravity.

  • PDF