• Title/Summary/Keyword: cover concrete

Search Result 579, Processing Time 0.03 seconds

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

An Experimental Study on the Fireproof Covering Thickness of High Strength Concrete Members with Spray Coating (뿜칠피복재를 사용한 고강도 콘크리트 부재의 내화피복두께에 관한 실험적 연구)

  • Lee, Tae-Gyu
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.41-46
    • /
    • 2010
  • High strength concrete (HSC) has been mainly used in large SOC structures. HSC have superior property as well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling in concrete front surface near the source of fire occurs serious problem in structural safety. Therefore, this study is concerned with experimentally investigation of fire resistance at high temperature due to fireproof material covering thickness in addition to concrete cover. From the test result, it was appeared that the use of fireproof material results in good performance for fire resistance and spalling prevention, and the optimal fireproof covering thickness is 1~3mm. On the other hand, the temperature was rapidly increased by explosive spalling within 30 minutes and showed very little rise caused by evaporation heat after then. It was also found that the void channel was remained at high temperature as PP fiber melts at about $200^{\circ}C$, and the pore pressure in concrete was decreased.

Numerical Modeling of Residual Behavior of Fire-Damaged Reinforced Concrete Interior Columns (화해를 입은 철근콘크리트 내부기둥의 잔존거동 수치해석 모델)

  • Lee Chadon;Shin Yeong-Soo;Lee Seung-Whan;Lee Chang-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.893-902
    • /
    • 2005
  • Reasonable prediction of residual capacity of fire-damaged reinforced columns is important for both the safety measurement and the rehabilitation of the reinforced concrete structures suffered from exposure to extensive fire. In order to predict the residual behavior of fire-damaged reinforced concrete columns, its predictive model must be able to take into account the amount of heat transferred into the column, the level of deterioration of constituent materials and various column geometries. The numerical model presented in this research includes all these factors. The model has been shown to reasonably predict the residual behavior of fire-damaged columns. Parametric studies were performed using this model for the effects of cover thickness, exposure time to fire and column geometries on the residual behavior of reinforced concrete columns. It was found that serious damage on the residual capacity of column resulted from a longer exposure time to fire but only marginal differences from other factors.

Fire Resistance Performance of High Strength Concrete Columns with Fireproof Gypsum Board (방화석고보드를 부착한 고강도 콘크리트 기둥의 내화성능)

  • Youm, Kwang-Soo;Jeon, Hyun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.229-235
    • /
    • 2010
  • In this study, fire resistance performance of high strength concrete specimen with fireproof gypsum board was investigated for possible use in upgrading fire-resistant performance of the existing building and repair of fire damaged structures. Fire test of eight identical high strength concrete columns were carried out for 180 minutes in accordance with ISO-834. The temperature distributions in longitudinal reinforcement and concrete temperature at various depths were recorded. The fireproof performance of gypsum board and explosive spalling of concrete were observed. The specimens with 15 mm thick twoply fireproof gypsum board spalled after gypsum board crumbled regardless of fastening methods. However, when the thickness of fireproof gypsum board was more than 30 mm, it was possible to prevent the explosive spalling and control the rebar temperature. Although the effect of cover thickness could not be compared because the explosive spalling occurred, there seemed to be no difference in insulation efficiency.

Field Survey on the Construction Errors for the Members of Reinforced Concrete Structures (현장조사를 통한 철근콘크리트 구조 부재의 시공오차에 관한 연구)

  • Yoon, Sang-Chun;Jee, Nam-Yong;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.201-208
    • /
    • 2010
  • Information on the distribution characteristics of construction errors is very important to determine the member factors, which are to be introduced in a new Korean design code for reinforced concrete structures. The new design code, which is under development for reinforced concrete structures, is based on the performance design concept. The construction errors of reinforced concrete members are mainly caused by the firmness and dimensional accuracy of forms, the arranging condition of reinforcing bars, the pouring and compaction methods of concrete, the skills of field workers, and the experience of supervisors. To find out the construction errors of reinforced concrete structures already built in Korea, a field survey for cover thickness, effective depth of reinforcement, the thickness of slabs and walls, and the dimension of beams and columns has been performed. Based on the survey, which is the first time in Korea, the analysis results are presented. The measuring methods for the construction errors, which have been established through the laboratory tests, are also presented. In addition, the measured construction errors from the survey are compared with the allowable tolerances in the current domestic and foreign specifications.

Development of Movable nose crossing turnout on concrete track using Fast Clip (Fast clip을 적용한 콘크리트궤도용 노스가동 분기기 개발)

  • Hwang, Kwang-Ha;Ryou, Ki-Tae;Park, Chun-Bok;Park, Kwang-Ryoun;Yun, Byung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.287-296
    • /
    • 2011
  • Turnout is a mechanical installation enabling railway trains to be guided from one track to another at a railway junction. A movable nose crossing frog is a device used at a railway turnout to eliminate the gap at the common crossing (High manganese, block, assembly crossing)which can cause impact damage, noise and vibration. Our government has a plan speed up of conventional line to 250km/h semi-high speed. We had already developed flexible turnout with fixed crossing(High manganese) and SFC fastening system can cover in the semi-high speed line In this study is about development of the movable nose crossing turnout available Semi-high speed line on concrete track. This paper describes about geometry, attack angle, bending stress at the nose, switching force, safety of continuous welded long rails. This movable nose crossing turnout is expected greatly increases passing speed of turnout in national railway.

  • PDF

Safety factor calibration for bridge concrete girders

  • Silva, Rita C.;Cremona, Christian
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.163-182
    • /
    • 2014
  • Safety factors proposed in codes CEB, B.A.E.L 91 and EUROCODE 1 cover a great number of uncertainties; making them inadequate for the assessment of existing structures. Suitable safety factors are established using a probabilistic assessment, once real dimensions, materials strength and existing structures deterioration mechanisms are taken into account. This paper presents a calibration method for safety factors using a typical set of RC bridges in France. It considers the principal stages of corrosion provoked by $CO_2$ and $Cl^-$ penetration and threshold indexes (${\beta}_0$) for existing structures. Reliability indexes are determined by the FORM method in the calibration method.

Stiffness modeling of RC columns reinforced with plain rebars

  • Ozcan, Okan
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.163-180
    • /
    • 2014
  • Inaccurate predictions of effective stiffness for reinforced concrete (RC) columns having plain (undeformed) longitudinal rebars may lead to unsafe performance assessment and strengthening of existing deficient frames. Currently utilized effective stiffness models cover RC columns reinforced with deformed longitudinal rebars. A database of 47 RC columns (33 columns had continuous rebars and the remaining had spliced reinforcement) that were longitudinally reinforced with plain rebars was compiled from literature. The existing effective stiffness equations were found to overestimate the effective stiffness of columns with plain rebars for all levels of axial loads. A new approach that considers the contributions of flexure, shear and bond slip to column deflections prior to yielding was proposed. The new effective stiffness formulations were simplified without loss of generality for columns with and without lap-spliced plain rebars. In addition, the existing stiffness models for the columns with deformed rebars were improved while taking poor bond characteristics of plain rebars into account.

Effects of Carbonation on the Microstructure of Cement Materials: Influence of Measuring Methods and of Types of Cement

  • Pham, Son Tung;Prince, William
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.327-333
    • /
    • 2014
  • The objective of this work was to examine the influence of carbonation on the microstructure of cement materials. Different materials, which were CEM I mortar and paste, CEM II mortar and paste, were carbonated at $20^{\circ}C$, 65 % relative humidity and 20 % of $CO_2$ concentration. The specific surface area and pore size distribution were determined from two methods: nitrogen adsorption and water adsorption. The results showed that: (1) nitrogen adsorption and water adsorption do not cover the same porous domains and thus, we observed conflicts in the results obtained by these two techniques; (2) the CEM II based materials seemed to be more sensible to a creation of mesoporosity after carbonation than the CEM I based materials. The results of this study also helped to explain why observations in the literature diverge greatly on the influence of carbonation on specific surface area.

A Study on Manipulative Materials in Mathematics Education (수학교육에서의 조작교구에 관한 연구)

  • 김수미
    • School Mathematics
    • /
    • v.2 no.2
    • /
    • pp.459-474
    • /
    • 2000
  • It has been said that concrete materials are useful and necessary when children learn mathematics. But it has been proved by several researches teachers don’t often use them even if they agree that they are useful. This article focuses on the lack of systematic and applicable research on manipulatives. Therefore, it tries to identify the state of current research and to present the concrete domains which need more study in the future, in order to induce both qualitative and quantitative research. The following nine domains cover almost all the research on manipulatives so far affect of manipulatives on achievement. types of learners, mathematical topics, subjects of operation, variety of mainipulatives, instructional method, degree of involvement of mainpulatives in class, selection criteria, and place for use.

  • PDF