Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.
Communications for Statistical Applications and Methods
/
v.21
no.2
/
pp.169-181
/
2014
Marginalized random effects models (MREM) are commonly used to analyze longitudinal categorical data when the population-averaged effects is of interest. In these models, random effects are used to explain both subject and time variations. The estimation of the random effects covariance matrix is not simple in MREM because of the high dimension and the positive definiteness. A relatively simple structure for the correlation is assumed such as a homogeneous AR(1) structure; however, it is too strong of an assumption. In consequence, the estimates of the fixed effects can be biased. To avoid this problem, we introduce one approach to explain a heterogenous random effects covariance matrix using a modified Cholesky decomposition. The approach results in parameters that can be easily modeled without concern that the resulting estimator will not be positive definite. The interpretation of the parameters is sensible. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using this method.
Journal of Korea Society of Digital Industry and Information Management
/
v.13
no.3
/
pp.75-81
/
2017
This paper estimate a desired signal in a correlation wireless communication. The transmitted signal is mixed with the information signal, interference, and noise in wireless channel, and it is incident on the receiver. In this paper, we apply MUSIC algorithm and sub-array method to recover the total rank of the correlation matrix in order to estimation a desired signal among receiving signals. Through simulation, we analyze to compare the proposed method with the classical MUSIC algorithm. As a result of the simulation, the proposed method improved the resolution about 10degrees compared to the conventional MUSIC algorithm. We prove the superiority of the proposed method for the desired signal estimation in correlation channel.
Journal of information and communication convergence engineering
/
v.9
no.5
/
pp.505-509
/
2011
This paper attempts to classify known facial expressions and to establish the correlations between two regions (eye + eyebrows and mouth) in identifying the six prototypic expressions. Covariance is used to describe region texture that captures facial features for classification. The texture captured exhibit the pattern observed during the execution of particular expressions. Feature matching is done by simple distance measure between the probe and the modeled representations of eye and mouth components. We target JAFFE database in this experiment to validate our claim. A high classification rate is observed from the mouth component and the correlation between the two (eye and mouth) components. Eye component exhibits a lower classification rate if used independently.
For effective on-line ARMA parameter estimation, a covariance type ARMA fast transversal filter (FTF) algorithm is presented. The proposed algorithm is a covariance type implementation of ELS(Extended Least Squares) estimator and it is a fast time update recursion which is based on the fact that the correlation matrix of ARMA model satisfies the shift invariance property in each sub-block. The geometric approach is used in the derivation of the proposed algorithm. It takes small computational burden of 13N+37 MADPR(Multiplication And Division Per Recursion). Also, AR and MA orders can be independetly and arbitrarily specified.
The Generalized Estimating Equations (GEE) approach is a widely used statistical method for analyzing longitudinal data and clustered data in clinical studies. In dentistry, due to multiple outcomes obtained from one patient, the outcomes produced from an individual patient are correlated with one another. This study focused on the basic ideas of GEE and introduced the types of covariance matrix and working correlation matrix. The quasi-likelihood information criterion (QIC) and quasi-likelihood information criterion approximation ($QIC_u$) were used to select the best working correlation matrix and the best fitting model for the correlated outcomes. The purpose of this study is to show a detailed process for the GEE analysis using SPSS software along with an orthodontic miniscrew example, and to help understand how to use GEE analysis in dental research.
Repeated measurements on each variables of interest often arise in bioscience or medical research. We need to account for correlations among repeated measurements to assess the correlation between two variables in the presence of replication. This paper reviews methods to estimate a correlation coefficient between two variables in repeated measurements using the variance-covariance matrix of linear mixed effect models. We analyze acoustic radiation force impulse imaging (ARFI) data to assess correlation between three shear wave velocity (SWV) measurements in liver or spleen and spleen length by ultrasonography. We present how to obtain parameter estimates for the variance-covariance matrix and correlations in mixed effects models using PROC MIXED in SAS.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.29
no.5
/
pp.375-382
/
2018
To eliminate strong jamming signals, a radar acquires a relatively weak target signal by using a side-lobe canceller (SLC) algorithm. This paper presents a novel adaptive SLC algorithm that is applicable to a fully digital active array radar. First, a covariance matrix is obtained from the SLC beam. Then, an adaptive SLC coefficient is extracted after calculating the correlation matrix between the main beam signal and the SLC beam signal. Finally, the target signal is estimated and the jamming signal is removed through the operation with the main beam signal. The application results from simulated radar signals demonstrated that the proposed algorithm is effective in an SLC system. Moreover, we analyzed various considerations and improved systematic usability.
Journal of the Korean Data and Information Science Society
/
v.25
no.5
/
pp.1025-1038
/
2014
Linear mixed model has often been utilized for genetic association analysis with family-based samples. The correlation matrix for family-based samples is constructed with kinship coefficient and assumes that parental phenotypes are independent and the amount of correlations between parent and offspring is same as that of correlations between siblings. However, for instance, there are positive correlations between parental heights, which indicates that the assumption for correlation matrix is often violated. The statistical validity and power are affected by the appropriateness of assumed variance covariance matrix, and in this thesis, we provide the linear mixed model with flexible variance covariance matrix. Our results show that the proposed method is usually more efficient than existing approaches, and its application to genome-wide association study of body mass index illustrates the practical value in real data analysis.
In this paper, we propose a method of significant term extraction within a document. The technique used is Principal Component Analysis(PCA) which is one of the multivariate analysis methods. PCA can sufficiently use term-term relationships within a document by term-term correlations. We use a correlation matrix instead of a covariance matrix between terms for performing PCA. We also try to find out thresholds of both the number of components to be selected and correlation coefficients between selected components and terms. The experimental results on 283 Korean newspaper articles show that the condition of the first six components with correlation coefficients of |0.4| is the best for extracting sentence based on the significant selected terms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.