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Abstract
Marginalized random effects models (MREM) are commonly used to analyze longitudinal categorical data

when the population-averaged effects is of interest. In these models, random effects are used to explain both
subject and time variations. The estimation of the random effects covariance matrix is not simple in MREM
because of the high dimension and the positive definiteness. A relatively simple structure for the correlation is
assumed such as a homogeneous AR(1) structure; however, it is too strong of an assumption. In consequence,
the estimates of the fixed effects can be biased. To avoid this problem, we introduce one approach to explain a
heterogenous random effects covariance matrix using a modified Cholesky decomposition. The approach results
in parameters that can be easily modeled without concern that the resulting estimator will not be positive definite.
The interpretation of the parameters is sensible. We analyze metabolic syndrome data from a Korean Genomic
Epidemiology Study using this method.

Keywords: Population-averaged effect, heterogeneity, Quasi-Monte Carlo, autoregressive model,
positive definite.

1. Introduction

In longitudinal data analysis, likelihood-based approaches have been used frequently such as gen-
eralized linear mixed models (Breslow and Clayton, 1993) and marginalized random effects models
(Heagerty, 1999). In these models random effects are used to explain the serial correlation of the re-
peated measurements from the same subject and the random effects covariance matrix must be taken
into account for proper inference on covariate effects (Fitzmaurice and Laird, 1993). The random ef-
fects covariance matrix is assumed that it is constant over subjects and is restricted because of its high
dimensionality and the positive definite constraint. However, in many situations, these assumptions
are too strong and result in biased estimates of the fixed effects (Heagerty and Kurland, 2001).

Recently the parameters of the random effects covariance matrix were proposed to depend on
subject-specific covariates using two methods: the partial autocorrelation approach and the modified
Cholesky decomposition. The partial autocorrelation approach uses a more flexible class of models
for serial autocorrelation by re-parameterizing the correlation matrix using partial autocorrelations
(Daniels and Pourahmadi, 2009; Lee et al., 2013). The partial autocorrelation matrix is not required
to be positive-definite and the correlation matrix corresponding to it is positive-definite. Wang and
Daniels (2013) discussed priors for parameters of the partial autocorrelations in Bayesian versions
of correlation models. This approach was extended to analyze bivariate longitudinal ordinal data in
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Lee et al. (2013). The modified Cholesky decomposition approach uses a set of dependence parame-
ters, generalized autoregressive parameters (GARP) and a set of variance parameters, the innovation
variances (IV). The positive definiteness restriction of the covariance matrix is that the IV need to be
positive (Pourahmadi, 1999, 2000). Daniels and Pourahmadi (2002) proposed Bayesian priors for the
GARP and IV in linear mixed models. Pourahmadi and Daniels (2002) developed dynamic condition-
ally mixed models by decomposing the within-subject covariance matrix using a modified Cholesky
decomposition (Pourahmadi, 1999, 2000). Similar modeling for covariance matrices was proposed in
Daniels and Zhao (2003). Pan and MacKenzie (2003, 2006) generalized Pourahmadi’s (1999, 2000)
method to deal with unbalanced longitudinal data and to address joint mean-covariance estimation for
linear mixed models. Lee et al. (2012) extended the modified Cholesky decomposition approach to
generalized linear mixed models. In this paper, we extend modified Cholesky decomposition approach
for random effects covariance matrix in marginalized random effects models.

Marginalized models are commonly used for analyzing longitudinal categorical data when the
population-averaged effects is of interest. Marginalized models are likelihood-based models (Hea-
gerty, 1999, 2002; Lee and Daniels, 2007, 2008; Lee et al., 2009; Lee and Mercante, 2010; Lee et
al., 2011). And the correlation of repeated measurements in these models is modeled via random ef-
fects (marginalized random effects models; MREMs) or a Markov correlation structure (marginalized
transition models; MTM) while the population averaged response is directly modeled as a function of
covariates, which induces restrictions on the correlation model. In this paper, we consider a marginal-
ized random effects model with general random effects covariance matrix using the modified Cholesky
decomposition.

The paper is organized as follows. In Section 2, we propose marginalized random effects models
with autoregressive structure of random effects covariance matrix. using a modified Cholesky de-
composition. In Section 3, we analyze data from the longitudinal study on metabolic syndrome. In
Section 4, we conduct a simulation study to present a marginalized random effect models (MREMs)
with using modified Cholesky decomposition. Finally, conclusions and extensions are provided in
Section 5.

2. Marginalized Modeling for Longitudinal Categorical Data

In this section, we propose marginalized random effects models (MREMs) with autoregressive (AR)
structure of random effects covariance matrix. The AR structure of the covariance matrix is explained
using modified Cholesky decomposition.

2.1. Marginalized random effects models

We first explain marginalized random effects models for longitudinal categorical data. Let Yit be the
response for subject i (i = 1, . . . ,N) at time t (t = 1, . . . , T ). We assume that each Yit is conditionally
independent given random effects bi, the responses for different subjects are independent, and Yit has
a conditional distribution in the exponential family given the random effects bi, taking the form

P(yit; bit) = exp
{

yitθit − ψ(θit)
a(ϕ)

+ c(yit, ϕ)
}
,

where a(·), ψ(·), and c(·) are known functions, and ϕ is a scale parameter. We model a transformation
of the mean, which would be some function of θit, as a linear model in both the fixed and random
factors. A transformation of the mean would be some function of θit, as a linear model in both the
fixed and random factors.



Autoregressive Cholesky Factor Modeling 171

Let µM
it = E(Yit; xit) and µc

it(bit) = E(Yit; xit, bit) be the marginal mean given covariates and the
conditional mean given random effects, respectively. Then the proposed model is given by

Marginal mean model: g
(
µM

it

)
= xT

itβ, (2.1)

Dependence model: g
(
µc

it(bit)
)
= ∆it + bit, (2.2)

bi ∼ N(0,Σi), (2.3)

where β is the r × 1 vector of marginal mean parameters, xit is a r × 1 vector of covariates for subject
i at time t, bi = (bi1, . . . , bini )

T , 0 is a vector of zeros with length ni, and Σi is a ni × ni matrix. Let
σ2

it be the tth diagonal element of Σi. The parameters ∆it in (2.2) are functions of the marginal mean
parameter, β, in (2.1) and random effects variance, σ2

it in (2.3) such that

µM
it =

∫
µc

it(bit) f (bit)dbit, (2.4)

where f (bit) is the normal probability density with mean 0 and variance σ2
it. Given β, and σ2

it, we
calculate ∆it using a Newton-Raphson algorithm from (2.4). Details regarding the Newton-Raphson
algorithm to find each ∆it is given in Heagerty (1999).

This model has several desirable features. First, since the marginal distribution of the observed
data are reasonably preserved, interpretation of the marginal mean parameters does not depend on
specification of the dependence model. Second, the parameter estimation of marginal mean models is
less susceptible to bias resulting from random effects model misspecification (Heagerty, 1999; Hea-
gerty and Kurland, 2001). This is an advantage of marginal models over generalized linear mixed
models. Third, the random effects bi in (2.2) capture both the correlation between the responses. In
generalized linear mixed models (GLMMs), a single scalar random intercept bi shared by all ni com-
ponents within a subject, and does not allow a broader class of a vector of correlated random effects
within each subject.

2.2. Random effects covariance matrix

The random effects covariance matrix, Σi in (2.3) is high dimensional and should be positive definite.
Therefore, its structure is assumed to be constant over subjects and to be restricted such as AR(1)
structure. However, these assumptions are too strong and can result in biased estimates of the fixed
effects. In this subsection, we propose modified Cholesky decomposition approach of random effects
covariance matrix for MREMs to solve the problems.

2.2.1. Modified Cholesky decomposition

We now propose a modified Cholesky decomposition approach for random effects covariance matrix
of the MREMs. The key idea of the modified Cholesky decomposition is that the covariance matrix
Σi of the random vectors bi in (2.3) can be diagonalized by a lower triangular matrix constructed from
the regression coefficients when bit is regressed on its predecessors bi1, . . . , bit−1. More precisely, for
t = 2, . . . , ni, we have

bit =

t−1∑
j=1

ϕi,t jbi j + eit, TiΣiT T
i = Di, (2.5)

where Ti and Di are unique matrices, Ti is a unit lower triangular having ones on its diagonal and −ϕi,t j

at its (t, j)th position for j < t, and Di is diagonal with σ2
i,t = var(eit) as its diagonal entries. The ϕ is
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referred as generalized autoregressive parameters (GARP) and the σ2
i,t as innovation variances (IV).

The constraint on theses parameters for Σi to be positive definite is that the IV need to be positive.
The standard Cholesky decomposition of a positive definite matrix is of the form

Σi = LiLT
i , (2.6)

where Li is lower triangular with positive diagonal elements. When Li = T−1
i D1/2

i , (2.6) is rewritten
as

Σi = T−1
I DiT−T

i ,

which is the result of the modified Cholesky decomposition of Σi.
In the standard Cholesky decomposition, statistical interpretation of the entries of Li in (2.6) is

difficult in its present form (Pinheiro and Bates, 1996). However, in the modified Cholesky decom-
position, the parameters, GARP and IV have meaningful statistical interpretation. The parameters,
GARP and IV can be modeled using time and/or subject-specific covariate vectors wi,t j and hi,t by
setting

ϕi,t j = wT
i,t jγ, log(σ2

i,t) = hT
i,tλ, (2.7)

where γ and λ are a×1 and b×1 vectors of unknown dependence and variance parameters, respectively.
Note that design vectors wi,t j and hi,t are used to model the GARP/IV parameters as functions of
subject-specific covariates. These models were commonly used for random effects covariance matrix
in the linear mixed models to allow the covariance matrix to vary across subjects (Pourahmadi, 2000;
Pourahmadi and Daniels, 2002; Daniels and Zhao, 2003).

The modified Cholesky decomposition decomposes the parameters of Σi to the GARP and log(IV)’s.
The GARP/IV parameterization has several advantages. First, since the GARP and log(IV) are un-
constrained, we can model the covariance matrix in terms of covariates. Second, the parameters have
a sensible interpretation because of linear combination of covariates in (2.7). Finally, the GARP/IV
parameterization in (2.7) provides parameters that can be easily modeling.

2.3. Maximum likelihood estimation

To derive the likelihood function for the (2.1)–(2.3) we use the simple case of longitudinal binary data.
Then the link function g(·) is the logit. Let θ = (β, γ, λ). Then the parameters ∆it in (2.2) are functions
of β in (2.1) and (γ, λ) in (2.3). Given these parameters, we calculate ∆it using a Newton-Rapson
algorithm in Heagerty (1999). Detail calculations are given in Appendix . The likelihood function is
the integral over random effects of a product of Bernoulli distributions.

L(θ; y, r) =
N∏

i=1

∫  ni∏
t=1

P(yit; bit)

 f (bi) dbi,

where f (bi) is a multivariate normal density with mean vector 0 and covariance matrix Σi .
Then the log-likelihood is given by

log L(θ; y) =
N∑

i=1

log
∫

L(θ, bi; yi) f (bi) dbi, (2.8)
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where

L(θ, bi; yi) = exp

 ni∑
t=1

{
yit (∆it + bit) + log

(
1 − pc

it(bit)
)} .

Maximizing the log-likelihood with respect to θ yields the likelihood equations

N∑
i=1

∂logL(θ; yi)
∂θ

=

N∑
i=1

L−1(θ; yi)
∫

∂L(θ, bi; yi)
∂θ

f (bi) dbi = 0.

Since the analytic forms of second derivatives of the observed data log-likelihood in (2.8) are not
closed forms, we use the quasi-Newton methods to solve the likelihood equations. The (c + 1)th
iteration θ(c+1) is updated using

θ(c+1) = θ(c) +
[
H(θ(c); y, r)

]−1 ∂ log L
∂θ(c) ,

where H(θ; y, r) is computed by the second derivatives of the log marginal likelihood. However, it
is not easy to compute the second derivatives of log marginal likelihood because of the integrals
of random effects. Instead, we use the product of the first derivatives of log marginal likelihood.
Therefore, we use an empirical and consistent estimator of the information matrix at step (c) and is
given as

H(θ; y, r) =
N∑

i=1

∂L(θ; yi, ri)
∂θ

∂L(θ; yi, ri)
∂θT .

At convergence, the large-sample variance-covariance matrix of the parameter estimates can be ob-
tained as the inverse of the information matrix. Details of maximizing the log-likelihood for the
modified Cholesky decomposition approach is provided in the Appendix.

3. Example

3.1. Metabolic syndrome data

Our approach is motivated by data from the Korean Genomic Epidemiology Study (KoGES) (Kim
et al., 2006). The purpose of the KoGES is to monitor the development of metabolic syndrome for
middle-aged Korean adults aged 39–69 years. Participants were examined every two years for up to
eight years to monitor the development of metabolic syndrome. Metabolic syndrome is a combination
of medical disorders that increase the risk of developing cardiovascular disease and diabetes. It affects
one in five people, and prevalence increases with age. It is also a significant risk factor for developing
type 2 diabetes, coronary heart disease, and other diseases related to plaque buildup in artery walls
(e.g., stroke and peripheral vascular disease).

Metabolic syndrome is defined as three or more of the following five disorders: abdominal obesity
(waist circumference > 90cm in men or > 80cm in women), high blood pressure (systolic BP levels >
130mmHg or diastolic BP levels > 85mmHg), high impaired fasting glucose (IFG > 110mg/dl), high
triglyceridemia (TG > 150mg/dl), and low high-density lipoprotein cholesterol (HDL-C < 40mg/dl
in men or < 50mg/dl in women). It is of primary interest how demographic factors affect metabolic
syndrome. The demographic factors were sex, age, alcohol consumption, and smoking.
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Table 1: Summary of prevalence of Metabolic Syndrome from KoGES Data.
Prop. of Y = 1 Visit overall prop.(Number of obs.) 1 (2310) 2 (1887) 3 (1679) 4 (1416)

Sex male 0.228 0.213 0.159 0.216 0.206
female 0.244 0.226 0.200 0.190 0.219
none 0.244 0.242 0.200 0.206 0.226

Drink past 0.313 0.262 0.164 0.216 0.242
current 0.221 0.197 0.168 0.194 0.197
none 0.236 0.214 0.187 0.176 0.207

Smoke past 0.237 0.225 0.176 0.224 0.214
current 0.241 0.240 0.174 0.295 0.236

overall prop. 0.237 0.220 0.183 0.201

Table 2: Table of four models based on wi,t j and hi,t.
MC 1 wi,t,t−1 = (1) hi,t = (1)
MC 2 wi,t,t−1 = (1,Sexi) hi,t = (1,Sexi)
GLM 1 wi,t,t−1 = (1) hi,t = (1)
GLM 2 wi,t,t−1 = (1,Sexi) hi,t = (1,Sexi)

Table 1 indicates that the marginal prevalence of metabolic syndrome over four visits are sum-
marized. The marginal prevalence of metabolic syndrome was higher for females than males, higher
for the current smoking group than for the past smoking group, higher for the past smoking group
than for the non-smoking group, higher for past drinking group than for the non-drinking group, and
higher for the non-drinking group than for the current drinking group over four visits. The baseline
mean age of 945 males was 49.21 and that of 1,365 females was 49.27.

We analyzed the demographic factors in KoGES associated with metabolic syndrome. The re-
sponse variable is 1 if a participant has metabolic syndrome and 0 otherwise. As predictors, we
included sex (1 = male; 0 = female), age (log(age/10)), alcohol consumption types (Drink1 = 1 if
drinking in the past, 0 otherwise; Drink2 = 1 if drinking currently, 0 otherwise), and smoking types
(Smoke1 = 1 if smoking in the past, 0 otherwise; Smoke2 = 1 if smoking currently, 0 otherwise).

3.2. Computations

Implementing the quasi-Newton algorithm in these models was computationally intensive because
the estimates required numerical integration for all subjects. We used simultaneously R software
and FORTRAN. R software was used for the quasi-Newton iteration and FORTRAN was used to
make subroutines(.dll Files) to conduct the numerical integrations. Each quasi-Newton step for our
proposed model required approximate 40 seconds.

3.3. Model fit

We fit two marginalized random effects models proposed in Section 2. We also fit two generalized
linear mixed models using the modified Cholesky decomposition in Lee at al. (2012). The four
models used the modified Cholesky decomposition approach for Σi. All models had random effects
covariance matrix with AR(1) structure, and the models are specified by wi,t j and hi,t in Table 2. MC
1 has a homogeneous random effects covariance matrix with AR(1) and MC 2 has random effects
covariance matrixes depending on sex, respectively. AICs for MC 1–2 and GLM 1–2 are given in
Table 3. Using a penalized model selection criterion (AIC) MC 1 provided a better fit than MC 2.
(6322.648 for MC 1, 6326.608, 6506.654 and 6490.920 for MC 2, GLM 1–2 respectively). These
comparisons indicated that MC 1 fit best among the four models.
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Table 3: AICs of models
Model MC 1 MC 2 GLM 1 GLM 2
AIC 6322.648 6326.608 6506.654 6490.920

Table 4: Maximum likelihood estimates for marginalized random effects model (Parameter estimates with
standard errors in the parentheses calculated using the diagonal of inverse of Hessian matrix of l(θ) at
convergence)

MC 1 MC 2
Marginal mean parameters: β

Intercept −4.964∗ (0.412) −4.936∗ (0.415)
Sex (male vs female) −0.281∗ (0.107) −0.291∗ (0.125)
log(Age/10) 2.303∗ (0.245) 2.287∗ (0.245)
Drink1 (past) −0.018 (0.107) −0.015 (0.108)
Drink2 (current) −0.101 (0.072) −0.100 (0.071)
Smoke1 (past) 0.293∗ (0.112) 0.296∗ (0.113)
Smoke2 (current) 0.454∗ (0.112) 0.459∗ (0.113)

λ for MC 1,2
Intercept 2.244∗ (0.324) 2.202∗ (0.420)
Sex 0.043 (0.611)

γ

Intercept 1.048∗ (0.053) 1.074∗ (0.075)
Sex −0.052 (0.104)
Maximized log-likelihood −3152.324 −3152.304
AIC 6322.648 6326.608

∗Indicates significance at the 5 % level of significance.

Table 4 presents the results from two model fits (MC 1–2). In all two models, the coefficients of
gender (Sex), age (log(Age/10)), smoking type (Smoke1, Smoke2) were statistically significant under
5% significance level. This suggests that the estimated marginal probability of metabolic syndrome
was lower for males than females and was higher in the past-smoking group and in the current-
smoking group than in the nonsmoking group. The estimated probability of Metabolic Syndrome
increased as age increased. Figures 1 and 2 presents the difference of estimated marginal probabilities.
Figures 1 and 2 are plots for averages of estimated marginal probabilities of metabolic syndrome
according to gender and smoking groups, respectively. These figures presents the differences between
male and female subjects and among smoking groups, respectively.

Since MC 1 was better than the MC 2 in the modified Cholesky decomposition approach, this
indicates that the random effects covariance matrices had homogeneous AR(1) structures and the
estimated value of Σi = T−1

i Di(T T
i )−1.

4. Simulation Study

We conducted simulations to compare structures of the random effects covariance matrix via examin-
ing biases and coverage probabilities of estimates of the marginal mean parameters. We considered
200 datasets from a MREM with two covariates, time and group (2 levels). Longitudinal binary re-
sponses were planned to take place at 6 equally spaced visit times. The marginal probability for the
MREM was specified as

logit P(Yit = 1|xit) = β0 + β1groupi + β2timeit + β3groupi timeit

β = (β0, β1, β2, β3) = (0.5,−0.4,−0.1,−0.2),
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Figure 1: Plot for averages of estimated marginal probabilities of metabolic syndrome for gender groups

Figure 2: Plot for averages of estimated marginal probabilities of metabolic syndrome for smoking groups

where timeit = t/10 for t = 0, 1, . . . , 6, and groupi = 0 or 1 with an equal sample size (100) per group.
The conditional probability was specified as

logit P(Yit = 1|bit) = ∆it + bit, (4.1)
bi ∼ N(0,Σi). (4.2)

We first considered two cases with different covariance matrices Σi using the modified Cholesky
decomposition approach.

Case1: We generated longitudinal binary responses with sample size of 200 from marginalized ran-
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Table 5: Averages and biases of fitted marginal mean parameters for Models 1 and 2 (Coverage probabilities)
Model 1 Model 2

mean bias mean bias

β0 (0.5) 0.504 0.004 0.494 0.006
(0.947) (0.955)

β1 (−0.4) −0.388 0.012 −0.398 0.002
(0.962) (0.945)

β2 (−0.1) −0.099 0.001 −0.098 0.002
(0.962) (0.950)

β3 (−0.2) −0.229 0.029 −0.191 0.009
(0.923) (0.930)

Table 6: Averages and biases of fitted marginal mean parameters for Models 3 and 4 (Coverage probabilities)
Model 3 Model 4

mean bias mean bias

β0 (0.5) 0.504 0.004 0.501 0.001
(0.955) (0.930)

β1 (−0.4) −0.418 0.018 −0.404 0.004
(0.950) (0.975)

β2 (−0.1) −0.099 0.001 −0.102 0.002
(0.965) (0.940)

β3 (−0.2) −0.178 0.022 −0.199 0.001
(0.975) (0.970)

dom effects model with AR(1) covariance matrix using modified Cholesky decomposition. The
covariance matrix was assumed to be homogenous. That is, Σi had ϕi,t j = γ0I(|t − j| = 1) and
log(σ2

i,t) = λ0. The assumed values for the parameters are γ0 = 0.5 and λ0 = 0.1. Then we fit the true
model (Model 1).

We also generated datasets from the same model with a different covariance matrix depending on
group. That is, Σi had ϕi,t j = γ0I(|t− j| = 1)+ γ1I(|t− j| = 1)groupi and log(σ2

i,t) = λ0 +λ1groupi. The
assumed values for the parameters γ and λ were (γ0, γ1) = (0.5, 0.1) and (λ0, λ1) = (0.05, 0.1). Then
we fit model with the homogeneous AR(1) covariance matrix (Model 2).

Table 5 presents the biases and coverage probabilities of marginal mean parameter estimates. The
averages of fitted marginal mean parameters for Model 1 were more close to true values than for
Model 2 except β1 and β3. The coverage probabilities were almost same.

Case 2: We next generated datasets from marginalized random effects model with AR(2) covariance
matrix using modified Cholesky decomposition. We assumed homogeneous AR(2) structure for Σi

which was given by ϕi,t j = γ0I(|t − j| = 1) + γ1I(|t − j| = 2) and log(σ2
i,t) = λ0. The assumed

values for the parameters γ and λ were (γ0, γ1) = (0.5, 0.1) and λ0 = 0.1, respectively. Then we
fit two marginalized random effects models with same covariance matrix (Model 3) and an AR(1)
homogeneous covariance matrix (Model 4), respectively.

Table 6 presents biases and coverage probabilities of estimates of marginal mean parameters.
Similar to Case 1, we had similar average fitted values for marginal mean parameters. The coverage
probabilities were similar.

From above simulations, we know that even though we fit MREM with wrong covariance matrix
the average biases and coverage probabilities were similar. The reason is that MREMs have a robust
property of estimation of marginal mean parameters to the misspecification of dependence model
under no missingness.
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5. Summary and Discussion

In this paper we proposed marginalized random effects models with an autoregressive structure of
covariance matrix using modified Cholesky decomposition. The covariance matrix is decomposed
to the innovation variances (IVs) and generalized autoregressive parameters (GARPs). This struc-
ture allows heterogeneous covariance matrix depending on subject-level covariates and satisfies the
positive-definiteness of the covariance matrix with positive IVs. Parameter estimation was based on
marginalized maximum likelihood estimation using a quasi-Newton algorithm. To numerically inte-
grate over the random effects, the quasi-Monte Carlo method was used in the likelihood equations.

In our KoGES analysis, we found that participant’s gender, age, smoking status had statistically
significant effects on metabolic syndrome. The proposed models capture usual population-averaged
effects in marginal mean as well as within-subject serial dependence of the responses in the depen-
dence model.

Simulation studies indicated that marginal mean parameter estimates with random effects covari-
ance matrix using modified Cholesky decomposition approach was well applied to marginalized ran-
dom effects models (MREMs). The MREMs have a robust property of estimation of marginal mean
parameters to misspecification of dependence model under no missingness. However, under MAR, it
is not guaranteed. We have left this case for future study.

The modified Cholesky decomposition is used for the covariance matrix. However, the correlation
matrix is commonly used instead of the covariance matrix. Therefore, we will consider the marginal-
ized random effects models with a general covariance matrix using partial autocorrelation approach.
Instead of modeling of the covariance matrix, the partial autocorrelation approach uses a partial au-
tocorrelation matrix that is not required to be positive-definite. The correlation matrix corresponding
to it is positive-definite. This approach is ongoing in the future study and we will explore various
methods to structure this matrix in terms of stable estimation and in terms of feasible computations.

Appendix A: Calculation of ∆it∆it∆it

The intercepts △it are a function of β, γ, and λ and must be obtained within the Newton-Raphson
algorithm. Let h(△it) =

∫
Pc

it(b
(t)
i ) f (bi)dbi − PM

it j. Estimates of △it can be obtained using Newton-
Raphson as follows,

△(n+1)
it = △(n)

it −
∂h

(
△(n)

it

)
∂△(n)

it


−1

h
(
△(n)

it

)
,

where

∂h(△it)
∂△it

=

∫
Pc

it(bit)
(
1 − Pc

it(bit)
)

f (bit)dbit. (A.1)

Note that the integral in (A.1) is one-dimensional and we use QMC to evaluate this integral. Numerical
evaluation of the integral in this paper is accomplished by using a 40-point Gauss-Hermite quadrature
with a maximal error < 10−5 for the real data analysis and a 40-point Gauss-Hermite quadrature with
a maximal error < 10−4 for the simulation study.
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Appendix B: Calculations of quasi-Newton for modified Cholesky decomposition
approach

Maximizing the log-likelihood with respect to θ yields the likelihood equations

N∑
i=1

∂ log L(θ; yi)
∂θ

= 0,

where

∂L(θ; yi)
∂β

= L−1(θ; yi)
∫

L(θ, bi; yi)
ni∑

i=1

(
yit − pc

it(bit)
) ∂∆it

∂β
f (bi)dbi,

∂L(θ; yi)
∂γ

= L−1(θ; yi)
∫

L(θ, bi; yi)

 ni∑
t=1

(
yit − pc

it(bit)
) ∂∆it

∂γ
−

ni∑
t=1

eit

σ2
i,t

∂eit

∂γ

 f (bi)dbi,

∂L(θ; yi)
∂λ

= L−1(θ; yi)
∫

L(θ, bi; yi)

 ni∑
t=1

(
yit − pc

it(bit)
) ∂∆it

∂λ
+

ni∑
t=1

 e2
it

σ2
i,t

− 1

 hit

 f (bi)dbi,

with

∂ei1

∂γ
= 0,

∂eit

∂γ
= −

t−1∑
j=1

bi jwi,t j.

To compute the score vector and information matrix, we also need derivatives of ∆it with respect
to β, γ, and λ. They can be obtained from the relationship (2.4),

∂PM
it

∂β
=

∫
∂Pc

it(bit)
∂△it

∂△it

∂β
f (bi)dbi,

⇒ ∂△it

∂β
=

PM
it

(
1 − PM

it

)
xit∫

Pc
it(bit)

(
1 − Pc

it(bit)
)

f (bi)dbi

.

Similarly, we have

∂△it

∂γ
=

∫
Pc

it(bit)
∑ni

k=1
eik

σ2
ik

∂eik
∂γ

f (bi)dbi∫
Pc

it(bit)
(
1 − Pc

it(bit)
)

f (bi)dbi

,

∂△it

∂λ
= −

∫
Pc

it(bit)
∑ni

k=1

(
e2

ik

σ2
ik
− 1

)
hik f (bi)dbi∫

Pc
it(bit)

(
1 − Pc

it(bit)
)

f (bi)dbi

.
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