• Title/Summary/Keyword: coupling method

Search Result 2,400, Processing Time 0.028 seconds

Estimation of Vibrational Power Supplied From Vibration Source to Supporting Structure (진동원으로부터 지지구조물에 전달되는 진동 파워의 추정방법)

  • 김재철;이종원
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.306-312
    • /
    • 1998
  • This paper proposes a method for estimating the vibrational power supplied by a machine that generates excitation force to its supporting structure via the coupling points. The basis of the method is that the vibrational power can be calculated using the mechanical impedance and the velocity at the coupling points on the supporting structure. First, a method is described to estimate the mobilities at the coupling points when the machine is not separable from the supporting structure, then the vibrational power is calculated using the estimated mobilities and measured velocities at the coupling points. The mobilities are estimated from the result of impulsive testing of the coupled structure. The method is investigated using an experimental model. The estimated and measured values of the mobilities and the vibrational power are compared. It is shown that the estimated values agree well with the measured values.

  • PDF

A Comparative Study on Coupling of Element-free Galerkin Method and Infinite Element by IE's Shape Function (무한요소 형상함수에 따른 무요소법과의 조합 방법 비교 연구)

  • 이상호;김명원;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.279-287
    • /
    • 2003
  • This paper deals with a comparative study on coupling of Element-free Galerkin(EFG) method and Infinite Element(IE) by IE's shape function. In this study, mapped infinite elements(mapped IE) and decay function infinite elements(decay IE) are coupled with the EFG method. A coupling procedure of EFG-Mapped IE is much easier to be integrated than a coupled EFG-Decay IE. A coupled EFG-IE method used well-defined functions to preserve the continuity and linear consistency on the interface of the EFG region and IE region. Several benchmark problems are solved to verify the effectiveness and accuracy of the coupling algorithms by IE's shape function. The numerical results show that the developed algorithms work well for the elastic problems with infinite boundaries.

  • PDF

Study on the Estimation of Vibrational Power Supplied From Source to Supporting Structure (진동원으로부터 지지구조물에 전달되는 진동 파워의 추정방법)

  • ;;Ohno, Shinichi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.379-384
    • /
    • 1997
  • This paper proposes a method for estimating the vibrational power supplied by a machine that generates excitation force to its supporting structure via the coupling points. The basis of the method is that the vibrational power can be calculated using the mechanical impedance and the velocity at the coupling points on the supporting structure. First, a method is described to estimate the mobilities at the coupling points when the machine is not separable from the supporting structure, then the vibrational power is calculated using the estimated mobilities and measured velocities at the coupling points. The mobilities are estimated from the result of impulsive testing of the coupled structure. The method is investigated using an experimental model. The estimated and measured values of the mobilities and the vibrational power are compared. It is shown that the estimated values agree well with the measured values.

  • PDF

Effective Valence Shell Hamiltonian Calculations on Spin-Orbit Coupling of SiH, SiH+, and SiH2+

  • Chang, Ye-Won;Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.723-727
    • /
    • 2003
  • Recently the ab initio effective valence shell Hamiltonian method $H^v$ has been extended to treat spin-orbit coupling in atoms or molecules. The quasidegenerate many-body perturbation theory based $H^v$ method has an advantage of determining the spin-orbit coupling energies of all valence states for both the neutral species and its ions with a similar accuracy from a single computation of the effective spin-orbit coupling operator. The new spin-orbit $H^v$ method is applied to calculating the fine structure splittings of the valence states of SiH, $SiH^+$, and $SiH^{2+}$ not only to assess the accuracy of the method but also to investigate the spin-orbit interaction of highly excited states of SiH species. The computed spin-orbit splittings for ground states are in good agreement with experiment and the few available ab initio computations. The ordering of fine structure levels of the bound and quasi-bound spin-orbit coupled valence states of SiH and its ions, for which neither experiment nor theory is available, is predicted.

Damage identification of vehicle-track coupling system from dynamic responses of moving vehicles

  • Zhu, Hong-Ping;Ye, Ling;Weng, Shun;Tian, Wei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.677-686
    • /
    • 2018
  • The structural responses are often used to identify the structural local damages. However, it is usually difficult to gain the responses of the track, as the sensors cannot be installed on the track directly. The vehicles running on a track excite track vibration and can also serve as response receivers because the vehicle dynamic response contains the vibration information of the track. A damage identification method using the vehicle responses and sensitivity analysis is proposed for the vehicle-track coupling system in this paper. Different from most damage identification methods of vehicle-track coupling system, which require the structural responses, only the vehicle responses are required in the proposed method. The local damages are identified by a sensitivity-based model updating process. In the vehicle-track coupling system, the track is modeled as a discrete point supported Euler-Bernoulli beam, and two vehicle models are proposed to investigate the accuracy and efficiency of damage identification. The measured track irregularity is considered in the calculation of vehicle dynamic responses. The measurement noises are also considered to study their effects to the damage identification results. The identified results demonstrate that the proposed method is capable to identify the local damages of the track accurately in different noise levels with only the vehicle responses.

Shear mechanism of steel fiber reinforced concrete deep coupling beams

  • Li, Kou;Zhao, Jun;Ren, Wenbo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Deep coupling beams are more prone to suffer brittle shear failure. The addition of steel fibers to seismic members such as coupling beams can improve their shear performance and ductility. Based on the test results of steel fiber reinforced concrete(SFRC) coupling beams with span-to-depth ratio between 1.5 and 2.5 under lateral reverse cyclic load, the shear mechanism were analyzed by using strut-and-tie model theory, and the effects of the span-to-depth ratio, compressive strength and volume fraction of steel fiber on shear strengths were also discussed. A simplified calculation method to predict the shear capacity of SFRC deep coupling beams was proposed. The results show that the shear force is mainly transmitted by a strut-and-tie mechanism composed of three types of inclined concrete struts, vertical reinforcement ties and nodes. The influence of span-to-depth ratio on shear capacity is mainly due to the change of inclination angle of main inclined struts. The increasing of concrete compressive strength or volume fraction of steel fiber can improve the shear capacity of SFRC deep coupling beams mainly by enhancing the bearing capacity of compressive struts or tensile strength of the vertical tie. The proposed calculation method is verified using experimental data, and comparative results show that the prediction values agree well with the test ones.

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure

  • Soares, Delfim Jr.;Goncalves, Kleber A.;de Faria Telles, Jose Claudio
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.263-277
    • /
    • 2015
  • This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces are iteratively updated, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. In addition, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate and efficient methodology.

The Limit of the March Test Method and Algorithms (On Detecting Coupling Faults of Semiconductor Memories) (March Test 기법의 한게 및 알고리즘(반도체 메모리의 커플링 고장을 중심으로))

  • 여정모;조상복
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.99-109
    • /
    • 1992
  • First, the coupling faults of semiconductor memory are classified in detail. The chained coupling fault is introduced and defined, which results from sequential influencing of the coupling effects among memory cells, and its mapping relation is described. The linked coupling fault and its order are defined. Second, the deterministic “Algorithm GA” is proposed, which detects stuack-at faults, transition faults, address decoder faults, unlinked 2-coupling faults, and unlinked chained coupling faults. The time complexity and the fault coverage are improved in this algorithm. Third, it is proved that the march test of an address sequence can detect 97.796% of the linked 2-coupling faults with order 2. The deterministic “Algorithm NA” proposed can detect to the limit. The time complexity and the fault coverage are improved in this algorithm.

  • PDF

A variationally coupled Element-Free Galerkin Method(EFGM) -Boundary Element Method(BEM) (무요소법과 경계요소법의 변분적 조합)

  • 이상호;김명원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.11-18
    • /
    • 2001
  • In this paper, a new algorithm of coupling Element-Free Galerkin Method(EFGM) and Boundary Element Method(BEM) using the variational formulation is presented. A global variational coupling formulation of EFGM-BEM is achieved by combining the variational form on each subregion. In the formulation, Lagrange multiplier method is introduced to satisfy the compatibility conditions between EFGM subregion and BEM subregion. Some numerical examples are studied to verify accuracy and efficiency of the proposed method, in which numerical performance of the method is compared with that of conventional method such as EFGM-BEM direct coupling method, EFGM and BEM. The proposed method incorporating the merits of EFGM and BEM is expected to be applied to special engineering problems such as the crack propogation problems in very large domain, and underground structures with joints.

  • PDF