• Title/Summary/Keyword: coupling method

Search Result 2,403, Processing Time 0.029 seconds

Piezoelectric Properties of 0.94(Na0.5K0.5)NbO3-0.06(Sr0.5Ca0.5)TiO3 with 0.1 MnO2 Addition at Varying Sintering Temperatures (소결 온도에 따른 0.94(Na0.5K0.5)NbO3-0.06(Sr0.5Ca0.5)TiO3-0.1 MnO2의 압전 특성)

  • Jung, Hye-Rin;Lee, Sung-Gap;Lee, Tae-Ho;Kim, Min-Ho;Jo, Ye-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.14-17
    • /
    • 2014
  • In this study, lead-free Piezoelectric $(Na_{0.47}K_{0.47}Sr_{0.03}Ca_{0.03})(Nb_{0.94}Ti_{0.06})O_3$-0.1 $MnO_2$ ceramics were fabricated using mixed oxide method and the effects of various sintering temperature on the structural and electrical properties were investigated. For the $(Na_{0.47}K_{0.47}Sr_{0.03}Ca_{0.03})(Nb_{0.94}Ti_{0.06})O_3$-0.1 $MnO_2$ (NKN-SCT-$MnO_2$) ceramics sintered at temperatures of $1,025{\sim}1,100^{\circ}C$. The results indicated that all specimens were perovskite single phase formation without any second phase. It has been shown that relative density is increased to increasing sintering temperature. When the sintered temperature at $1,075^{\circ}C$, highest sintered density and maximum value of $4.45g/cm^3$. Average grain size is increased to increasing sintering temperature. The electromechanical coupling factor, dielectric constant, dielectric loss, d33 and curie temperature at the sintering temperature $1,075^{\circ}C$ of NKN-SCT-$MnO_2$ specimens were 0.22, 511, 0.033, 103 and $380^{\circ}C$, respectively.

Effects of Cephalic Glucopenia on Insulin and Glucagon Secretion in Central Nervous System-Intact Pancreas Perfused Rats (중추신경이 온전한 쥐의 Cephalic Glucopenia가 인슐린과 글루카곤 분비에 미치는 영향)

  • Hyun Ju Choi
    • Biomedical Science Letters
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2000
  • In situ brain-pancreas perfusion was performed on male adult Sprague-Dawley rats, of which the central nervous systems (CNS) were intact during the perfusion procedure. The modified Krebs-Ringer buffer with 100 mg/dL of glucose and 20 mM of arginine was perfused for 30 min. In the experimental groups, a cephalic glucopenia was induced at 0 min (GLP1 group) or at 16 min (GLP2 group). The glucopenia was not induced in the control (CONT group). Insulin and glucagon concentrations in the effluent samples from the pancreas were measured using a RIA method. In all three groups, the first and second phases in the dynamics of the insulin and glucagon secretion were observed, which was a typical biphasic secretory pattern. The amount of insulin secretion tended to decrease in the GLP1 and GLP2 groups, but there was no statistically significant difference among the groups. However, the amount of glucagon secretion during 0~15 min of the perfusion period in the GLP1 group was greater as compared to the CONT group (p<0.05). The amount of glucagon secretion during 16~30 min of the perfusion period in the GLP2 group tended to be greater as compared to the CONT group, however there was no statistical significance. These data indicate that the cephalic glucopenia stimulates the direct secretion of glucagon from the pancreas during the early period of perfusion in the CNS-intact pancreatic perfused rats.

  • PDF

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Development of Novel Assistive Device for Improving Usability of BVM (인공호흡기 사용성 향상을 위한 새로운 보조기구 개발)

  • Jeon, Gang-Hyun;Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.420-426
    • /
    • 2020
  • In this study, an assistive device for BVM (Bag Valve Mask) was developed. When emergencies occur, rescuers must perform artificial respiration within four minutes utilizing suitable BVM. If not, the patient can suffer serious damage within their brain and body systems. The rescuer must execute artificial respiration until the patient arrives at the hospital. In the process of artificial respiration, the rescuer can feel fatigued in their forearm muscles, particularly those who may have smaller hands or weaker muscle strength. Many products have been developed to solve these problems, but these products are difficult to market and commercialize because of their volume, size, and difficulty of use. In this paper, the BVM assistive device that has been previously manufactured was improved, and an attempt was made to devise a new method that reduces the burden on the user. The BVM assistive device can be divided into three-parts: a head part for compressing the air bag, which can control the amount of air; the body part for coupling with BVM; and finally, the handle that can rotate for better use on various postures of patients. Throughout the experiment, the assistive device could inject an equal amount of air into the patients. As a result, the rescuer could feel less fatigue and inject a suitable amount of air to emergency patients during artificial respiration.

An Evaluation Method of X-ray Imaging System Resolution for Non-Engineers (비공학도를 위한 X-ray 영상촬영 시스템 해상력 평가 방법)

  • Woo, Jung-Eun;Lee, Yong-Geum;Bae, Seok-Hwan;Kim, Yong-Gwon
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.309-314
    • /
    • 2012
  • Nowadays, digital Radiography (DR) systems are widely used in clinical sites and substitute the analog-film x-ray imaging systems. The resolution of DR images depends on several factors such as characteristic contrast and motion of the object, the focal spot size and the quality of x-ray beam, x-ray scattering, the performance of the DR detector (x-ray conversion efficiency, the intrinsic resolution). The DR detector is composed of an x-ray capturing element, a coupling element and a collecting element, which systematically affect the system resolution. Generally speaking, the resolution of a medical imaging system is the discrimination ability of anatomical structures. Modulation transfer function (MTF) is widely used for the quantification of the resolution performance for an imaging system. MTF is defined as the frequency response of the imaging system to the input of a point spread function and can be obtained by doing Fourier transform of a line spread function, which is extracted from a test image. In clinic, radiologic technologists, who are in charge of system maintenance and quality control, have to evaluate or make routine check on their imaging system. However, it is not an easy task for the radiologic technologists to measure MTF accurately due to lack of their engineering and mathematical backgrounds. The objective of this study is to develop and provide for radiologic technologists a medical system imaging evaluation tool, so that they can measure and quantify system performance easily.

Immunological properties of the 30 kDa antigen of Toxoplasma gondii (단클론 항체를 이용하여 정제한 톡소포자충 30 kDa 항원의 면역학적 특성)

  • Lee, Yeong-Hwa;No, Tae-Jin;Sin, Dae-Hwan
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • The molecular weight 30 kDa membrane protein of Toxoplusma Sondii (Toxoplasma 30 kDa) apparently conserved in most strains of T. gondii and sera of infected hosts. The present study aimed to elucidate Toxoplasmc 30 kDa as a useful diagnotic antigen for serodiagnisis of toxoplasmosis by ELISA and for induction of protective immunity. Murine spleen cells immunized with the membrane antigen of T. gondii were fused with mouse Sp2/0-Ag 14 myeloma cells. Out of 8 clones selected, five were IgG2b, the others belonged to IgG 1 and IgG2a. The 30 kDa antigen was distributed mainly on the surface membrane of tachyzoites by indirect fluorescence method. Murine peritoneal macrophages which were activated by 30 kDa antigen produced more amounts of NO2 compared with crude antigen-treated group, however there were no significant differences in toxoplamacidal activity between the two groups. Higher specificity of Toxoplosma 30 kDa antigen was recognized for serodiagnosis of toxoplasmosis than the crude antigen. From these results, ToxopLasmo 30 kDa antigen enhances the cytotoxic effect of macrophages as well as a more reliable means for the serodiagnosis of toxoplasmosis by ELISA. Key words: Toxoplosma gondii, 30 kDa antigen (p30), mouse, serodiagnosis, macrophage, cytotoxicity.

  • PDF

Development of Biosensor for Simultaneous Determination of Glucose, Lactic Acid and Ethanol (포도당, 젖산 및 에탄올의 동시 측정용 바이오센서의 개발)

  • Kim, Jung-Ho;Rhie, Dong-Hee;Kim, Tae-Jin;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.22-34
    • /
    • 1998
  • The purpose of this study is to develop biosensor for determination of glucose, lactate, and ethanol in foods and food-stuffs simultaneously. The multiple cathode system was prepared with an oxygen electrode having one anode and hexagonal cathode. Glucose oxidase, mutarotase, lactate oxidase, alcohol oxidase and catalase were used for immobilization to determine glucose, lactate, and ethanol. These components including ethanol were simultaneously determined by the immobilized enzymes in the multiple cathode system. The determination of the components by enzyme sensor was based on the maximum slope of oxygen consumption from enzyme reaction of each sensor part. The response time for analysis was 1 min. The optimum condition for glucose, lactate and ethanol sensor was found to be 0.1 M potassium phosphate buffer, pH 7.0 at $40^{\circ}C$. Interferences of various sugars and organic acids were investigated. Less than 10% of error was found in determination of the components except organic acids. This difference was compensated by the modified equation. This system was confirmed by conventional methods. It was concluded that the multiple cathode system of this study is for an effective method to determine sugar, organic acid, ethanol simultaneously in foods.

  • PDF

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.

Water Level Control of PWR Steam Generator using Knowledge Information and Neural Networks (지식정보와 신경회로망을 이용한 가압경수로 증기발생기 수위제어)

  • Bae, Hyeon-Bae;Woo, Young-Kwang;Kim, Sung-Shin;Jung, Kee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.322-327
    • /
    • 2003
  • The water level of a steam generator of pressurized light water nuclear Power generator is known as a subject whose control is difficult because of a shrinking and swelling effect that is been mutually contradictory in a variation of feed water. In this paper, a neural network model selects first coordinative controller by a inappropriate gain of two PI controllers and the selected controller's gain is tuned by a fuzzy self-tuner. Model inputs consist of the water level, the feed water, and the stream flow. One controller of both coupling controllers whose gain is handled firstly is decided based upon above data. The proposed method can analyze patterns of signals using the characteristic of neural networks and select one controller that needs to be tuned through the observed result in this paper. If one controller between both the water level controller and the feed water controller is selected by the neural network model then a gain of the PI controller is suitably tuned by the fuzzy self-tuner. Rules of the fuzzy self-tuner drew from the pattern of input and output data. In the summary, the goal of this Paper is to select the suitable controller and tune the control gain of the selected controller suitably through such two processes.

Prediction of Preliminary Pogo Instability on a Space Launch Vehicle (예비설계 단계 우주발사체의 공급/추진계 모델을 이용한 포고 불안정성 예측)

  • Lee, SangGu;Sim, JiSoo;Shin, SangJoon;Seo, Yongjun;Ann, Sungjun;Song, Huiseong;Kim, Youdan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.64-72
    • /
    • 2017
  • The longitudinal dynamic instability which can occur in the fueling process of a space launch vehicle is called pogo. It is caused by coupling between the fuselage and propulsion system and they would be formed as a closed-loop system. so that the amplitude of the response may increase or decrease. In this paper, a mathematical model which is applicable to the systematic pogo analysis of a general launch vehicle is developed for an example of space shuttle. The formulations are composed of the linearized second-order differential equation for the propulsion system, and of the pressure, weight displacement, and generalized displacement. Those are important parameters for pogo analysis, are derived through eigenvalue analysis. By the formulation suggested in this paper, it is expected that mathematical modeling method of the pogo system can be obtained and systematic pogo stability analysis for any launch vehicle will be enabled.