• Title/Summary/Keyword: coupling form

Search Result 301, Processing Time 0.027 seconds

Dynamic System Analysis of Machine Tool Spindles with Magnet Coupling

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.87-93
    • /
    • 2002
  • In this study, basic concepts of magnet were introduced, and dynamic characteristics of magnet coupling were explored. Based on these characteristics, it was proposed how to analyze transverse and torsional vibrations of a spindle system with magnet coupling. Proposed theoretical approaches were applied to a precision power transmission system machined for this study, and the transverse and torsional vibrations were simulated. The force on magnet coupling was shown as a form of nonlinear function of the gap and the eccentricity. Also, the form of torque transmitted by magnet coupling was considered as a sinusoidal function. Main spindle connected to a coupling of a follower part was assumed to be a rigid body. Nonlinear partial differential equation was derived to be as a function of angular displacement. By using the equation, torsional vibration analysis of a spindle system with magnet coupling was performed. Free and forced vibration analyses of a spindle system with magnetic coupling were explored by using FEM.

An Improvement of Closed-Form Formula for Mutual Impedance Computation

  • Son, Trinh-Van;Hwang, Keum Cheol;Park, Joon-Young;Kim, Seon-Joo;Shin, Jae-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.240-244
    • /
    • 2013
  • In this paper, we present an improvement of a closed-form formula for mutual impedance computation. Depending on the center-to-center spacing between two rectangular microstrip patch antennas, the mutual impedance formula is separated into two parts. The formula based on synthetic asymptote and variable separation is utilized for spacings of more than 0.5 ${\lambda}_0$. When the spacing is less than 0.5 ${\lambda}_0$, an approximate formula is proposed to improve the computation for closely spaced elements. Simulation results are compared to computational results of mutual impedances and mutual coupling coefficients as functions of normalized center-to-center spacing in both E- and H-plane coupling configurations. A good agreement between simulation and computation is achieved.

The Behavior of Reinforced Concrete Coupling Slab in Wall-Dominant System (벽식 아파트 구조에서 연결슬래브의 거동특성)

  • Choi, Youn-Cheul;Choi, Hyun-Ki;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.61-64
    • /
    • 2006
  • A common form of construction for apartment buildings consists of walls and coupling element. But, the structural behavior of coupling element are very complex and affected by the properties of coupling element. The propose of this paper is to evaluation the behavior of coupling element in wall-dominant system. An 1/2 scale three specimens was constructed and under cyclic loads. The specimen was consisted of opening walls and coupling element as well as floor slabs. From the result of this study, in coupling slabs, the stresses were not uniform across the width. And the effective width of coupling slabs was found smaller than the that of predicted from previous studies.

  • PDF

Design rules of directional coupler optical switches in consideration of parasitic couplings in the input/output bending sections (Input/Output bending 영역에서의 parasitic coupling을 고려한 방향성 결합기 광 스위치의 설계 법칙)

  • 김동각;김창민
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.1
    • /
    • pp.41-48
    • /
    • 1997
  • Design rules of directional coupler optical switches are discussed in consideration of parasitic couplings in the bending section. The parasitic coupling phenomenon is analyzed based on the coupled-mode theory and the solutions are represented in the form of the transfer matrix. The modified switching conditions due to the parasitic coupling are derived and the resultant switching diagrams are illustrated. It is revealed that the parallel section's length needs to be adjustd less than the coupling length $l_c(=\pi/2\textsc{k}o)$ to obtain the desired crosstalk and that the adjustment depends on the strength of the parasitic coupling. However, it is discovered that, for weak parasitic coupling, the switching voltage does not need to be altered but may maintain the same value as if no parasitic coupling is taken into account.

  • PDF

Shear strength prediction of PRC coupling beams with low span-to-depth ratio

  • Tian, Jianbo;Shen, Dandan;Li, Shen;Jian, Zheng;Liu, Yunhe;Ren, Wengeng
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.757-769
    • /
    • 2019
  • The seismic performance of a coupled shear wall system is governed by the shear resistances of its coupling beams. The plate-reinforced composite (PRC) coupling beam is a newly developed form of coupling beam that exhibits high deformation and energy dissipation capacities. In this study, the shear capacity of plate-reinforced composite coupling beams was investigated. The shear strengths of PRC coupling beams with low span-to-depth ratios were calculated using a softened strut-and-tie model. In addition, a shear mechanical model and calculating method were established in combination with a multi-strip model. Furthermore, a simplified formula was proposed to calculate the shear strengths of PRC coupling beams with low span-to-depth ratios. An analytical model was proposed based on the force mechanism of the composite coupling beam and was proven to exhibit adequate accuracy when compared with the available test results. The comparative results indicated that the new shear model exhibited more reasonable assessment accuracy and higher reliability. This method included a definite mechanical model and reasonably reflected the failure mechanisms of PRC coupling beams with low span-to-depth ratios not exceeding 2.5.

Dynamic Analysis of Spindle System with Magnetic Coupling(ll) (마그네틱 커플링을 장착한 축계의 동적해석(II))

  • Kim, S.G.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.107-113
    • /
    • 1995
  • Using the mathematical model of the torsional vibration in spindle system with magnetic coupling, which was proposed in the paper of dynamic analysis of spindle system with magnetic coupling(l), we derive the equations of the motion and the form of the derived equations represents Duffing equation. Numerical analyses are executed in many conditions, namely the various types in magnetic coupling, changes of the gap between driver and follower. To verify the results of the therorectical analyses, a precision dynamic drive system is manufactured and methods of the test to measure the torsional vibration of the spindle system with magnetic coupling are presented ad thests in various conditions are carried out.

  • PDF

Analysis of Coupling Windows of the Dielectric Resonator Filter (유전체 공진기 필터의 결합창 특성해석)

  • 김병욱;윤두일;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.101-105
    • /
    • 2002
  • In this paper, the coupling windows of the dielectric resonator filter have been analyzed. The coupling factor which has been used to characterize the coupling window is represented by closed form expressions. The deviation of the coupling factor as the size of coupling window has been compared between calculated by presented method and measured ones. There are very closed agreements. The presented method can be applied not only to design dielectric resonator but also to design varactor tuned dielectric resonator filter so as that the passband bandwidth is constant within tuned ranges.

Fluid-structure interaction problems solution by operator split methods and efficient software development by code-coupling

  • Ibrahimbegovic, Adnan;Kassiotis, Christophe;Niekamp, Rainer
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.145-156
    • /
    • 2016
  • An efficient and general numerical strategy for fluid-structure interaction problems is presented where either the fluid or the structure part are represented by nonlinear models. This partitioned strategy is implemented under the form of code coupling that allows to (re)-use previous made developments in a more general multi-physics context. This strategy and its numerical implementation is verified on classical fluid-structure interaction benchmarks, and then applied to the impact of tsunamis waves on submerged structures.

GRADIENT PROJECTION METHODS FOR THE n-COUPLING PROBLEM

  • Kum, Sangho;Yun, Sangwoon
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1001-1016
    • /
    • 2019
  • We are concerned with optimization methods for the $L^2$-Wasserstein least squares problem of Gaussian measures (alternatively the n-coupling problem). Based on its equivalent form on the convex cone of positive definite matrices of fixed size and the strict convexity of the variance function, we are able to present an implementable (accelerated) gradient method for finding the unique minimizer. Its global convergence rate analysis is provided according to the derived upper bound of Lipschitz constants of the gradient function.

Enhanced Primary Production in Response to Freshwater Inflow in the Nakdong River Estuary: Characteristics of land-Ocean Coupling (LOC) (낙동강 하구에서 담수 유입에 따른 연안 클로로필-a 증가 : 낙동강의 육상-해양 coupling 패턴 분석)

  • KIM, SUHYUN;AN, SOONMO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.96-109
    • /
    • 2021
  • Since terrestrial input plays a major role in coastal primary production, an understanding of land-ocean coupling (LOC) is key to understand coastal ecological changes. In this study, the LOC has been classified into three stages (i.e., the baseflow, plume event and residual flow). In order to characterize its pattern in Nakdong River estuary, multi-platform data were obtained from remote sensing (geostationary ocean color image (GOCI)), in-situ measurement (marine environment information system (MEIS)), on-site measurement (discharge data and meteorological data). The MEIS data were grouped into three stages of LOC using principal component analysis (PCA), and the LOC (2013 ~ 2018) was examined at each stage using multi-platform data. In the Nakdong River estuary, the maximum value of chlorophyll-a (chl-a) was unexpectedly appeared during the plume event. It is assumed that there was no significant increase in turbidity, expected during the typical plume event, together with the weak flushing effect, caused the enhanced phytoplankton growth. Compared with other estuaries, LOC is common in estuaries affected by freshwater inflow, but LOC has different pattern depending on the size of the plume. While estuaries that form small plumes of about 10 km (low freshwater discharge and weak flushing effect) observed high chl-a in the plume event because the phytoplankton can response to the increased nutrient more rapidly. estuaries that form large plumes of more than 100 km est (high freshwater discharge and strong flushing effect) follow the typical LOC pattern conceptualized in this study (high chl-a in the residual flow).