• Title/Summary/Keyword: coupling beam

Search Result 491, Processing Time 0.024 seconds

Thermal study of a scanning beam in granular flow target

  • Ping Lin;Yuanshuai Qin;Changwei Hao;Yuan Tian ;Jiangfeng Wan ;Huan Jia ;Lei Yang ;Wenshan Duan ;Han-Jie Cai ;Sheng Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4310-4321
    • /
    • 2022
  • The concept of dense granular-flow target (DGT) for the China Initiative Accelerator Driven Subcritical system (CiADS) is an attractive choice for high heat removal ability, low chemical toxicity, and radiotoxicity. A wobbling hollow beam is proposed to enhance the homogeneity of temperature rise of flowing particles in beam-target coupling zone. In this paper, the design procedure of target and beam parameters was discussed firstly. Then we simulated the heat deposition and transfer of the scanning beam in DGT to study the effect of beam parameters. The results show the flux density of proton beam plays a crucial role in the distribution of temperature rise while the contributions from scanning frequency heat transfer are also obvious. Moreover, heat transfer in transversal directions is insignificant, resulting in a low heat flux towards the sidewalls of DGT. This work not only contributes to the design of DGT, but also beneficial for understanding the beam-target coupling in porous materials.

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Adhesion Properties between Polyimide Film and Copper by Ion Beam Treatment and Imidazole-Silane Compound (이온빔 및 이미다졸-실란 화합물에 의한 폴리이미드 필름과 구리의 접착 특성)

  • Kang, Hyung Dae;Kim, Hwa Jin;Lee, Jae Heung;Suh, Dong Hack;Hong, Young Taik
    • Journal of Adhesion and Interface
    • /
    • v.8 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Polyimide (PI) surface modification was carried out by ion-beam treatment and silane-imidazole coupling agent to improve the adhesion between polyimide film and copper. Silane-imidazole coupling agent contains imidazole functional groups for the formation of a complex with copper metal through a coordination bonding and methoxy silane groups for the formation of siloxane polymers. The PI film surface was first treated by argon (Ar)/oxygen ($O_2$) ion-beam, followed by dipping it into a modified silane-imidazole coupling agent solution. The results of X-ray photoelectron spectroscopy (XPS) spectra revealed that the $Ar/O_2$ plasma treatment formed oxygen functional groups such as hydroxyl and carbonyl groups on the polyimide film surface and confirmed that the PI surface was modified by a coupling reaction with imidazole-silane coupling agent. Adhesion between copper and the treated PI film by ion-beam and coupling agent was superior to that with untreated PI film. In addition, adhesion of PI film treated by an $Ar/O_2$ plasma to copper was better than that of PI film treated by a coupling agent. The peeled-off layers from the copper-PI film joint were completely different in chemical composition each other. The layer of PI film side showed similar C1s, N1s, O1s spectra to the original Upilex-S and no Si and Cu atoms appeared. On the other hand the layer of copper side showed different C1s and N1s spectra from the original PI film and many Si and Cu atoms appeared. This indicates that the failure occurs at an interface between the imidazole-silane and PI film layers rather than within the PI layers.

  • PDF

Investigation on Friction Noise in Beam Structure Under Mode-Coupling by Using Analytical Finite-Element Squeal Model (스퀼 융합모델을 이용한 모드연성에 의한 빔 구조 마찰 소음 연구)

  • Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.545-550
    • /
    • 2014
  • This study provided the analytical finite element method estimating the friction-induced noise on the complex beam structure. The frictional contact model was theoretically constructed and applied to the analytical finite element squeal model. The numerical results showed that the beam structure was excited by the mode-coupling instability of the specific system modes. Also, the direction of friction was shown to influence on the dynamic instability of the modes. Besides, the unstable modal frequencies estimated from the numerical calculation were validated by the experiment of the actual beam structure.

Seismic Performance of Coupled Shear Wall Structural System with Relaxed Reinforcement Details (완화된 배근 상세를 갖는 병렬전단벽 구조시스템의 내진성능평가)

  • Song, Jeong-Weon;Chun, Young-Soo;Song, Jin-Kyu;Seo, Soo-Yeon;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • The current seismic design code prescribes that coupling beam should be reinforced using diagonally bundled bars. However, the use of a diagonally bundled bars has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of 4 coupling beams with the different details of reinforcement was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the details of shear reinforcement. Next, the seismic performance of the coupled shear wall system evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of coupling beams with relaxed reinforcement detail was almost similar to that of a coupling beam with the ACI detail and meet the level which requested from standard. The result of the seismic evaluation showed that all coupling beams are satisfied with the design code and seismic performance.

Vibration Transmission of Plate-Beam Structure having discontinuity (평판과 보의 연성구조물의 진동에너지 전달특성 분석에 관한 연구)

  • 이형택;김정태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.391-395
    • /
    • 1997
  • The transmission of sound and vibration through structures is of interest in many noise control problems, including architectural acoustics, sound transmission through air craft, spacecraft and ship, and the transmission of noise through machinery and engine enclosures. Statistical Energy Analysis provides a simple and accurate method of approaching these problems. In this paper, comparing the measured coupling loss factor of plate-beam with measured coupling loss factor of mass on the junction will be inspected.

  • PDF

All-optical Internodal Switching in Two-mode Waveguide (이중모드 광섬유내에서의 전 광(All-optical) 모드 변환 스위칭)

  • 박희갑
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.119-122
    • /
    • 1989
  • An intermodal switch based on optically-induced (through optical Kerr effect) periodic coupling in a two-mode waveguide is described and demonstrated. A high power pump beam injected into the two modes of the waveguide produced a periodic modulation of the refractive index profile with a period of modal beat length. this causes an intermodal coupling of the prove beam. The operating principle was successfully demonstrated in an elliptical core two-mode fiber with a counter-propagating pump-probe scheme.

  • PDF

Improvement of the Signal-to-Noise Ratio of Photorefractive Joint Transform Correlator using Characteristics of $BaTiO_3$ ($BaTiO_3$의 특성을 이용한 광굴절 결합 변환 상관기의 신호 대 잡음비 개선)

  • 공명술;서동환;신창목;조규보;김철수;김수중
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.3
    • /
    • pp.19-32
    • /
    • 2003
  • In the conventional photorefractive joint transform correlator(PRJTC), the intensity ration of input signal-to-pump beam should be large enough to saturate two-beam coupling transfer function to obtain a desired correlation result. As a result, the signal-to-noise ratio(SNR) of correlation result is decreased in a noisy input image. In this paper, we propose the improved method for increasing the SNR of the PRJTC by using the characteristics of BaTiO$_3$. We stop the energy transfer saturating by low intensity ratio of input beam and realize a short length of effective interaction in BaTiO$_3$ by making large incident angle of the signal beam. So the gain in high frequency area is decreased and the gain in low frequency area comes up to the saturation gain of the beam coupling transfer function. Therefore the SNR is improved in noisy input image and the PRJTC can be easily realized by low intensity ratio of input beam.

A SIW Fed Antipodal Linear Tapered Slot Planar Multi-Beam Antenna for Millimeter-Wave Application

  • Zhang, Yingsong;Hong, Wei;Kuai, Zhenqi
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.175-178
    • /
    • 2010
  • In this paper, a millimeter-wave multi-beam antenna is studied by rotating the antipodal linear tapered slot antenna(ALTSA) with respect to a center is successfully designed. In order to lowering the SLL and enhancing the isolation between the ALTSA elements, a row of metallic via is inserted between the ALTSAs. A 9 beams antenna is designed and experimented at Ka band. The measured and simulated results agree well with each other. The antenna can provide horizontal wide angle coverage up to ${\pm}62^{\circ}$. The gain of each beam can achieve about 12.5 dB. The mutual coupling between ports is all below 20 dB.

A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow

  • Baudille, Riccardo;Biancolini, Marco Evangelos
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.449-465
    • /
    • 2008
  • In this paper a general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow is presented. The fluid is solved by a general purpose commercial computational fluid dynamics (CFD) package (FLUENT 6.2), while the structure is managed by means of a dedicated finite element method solver, coded in FLUENT as a user-defined function (UDF). A weak fluid structure interaction coupling scheme is adopted exchanging information at the end of each time step. An arbitrary cantilever beam can be introduced in the CFD mesh with its wetted boundaries specified; the cantilever can also interact with specified rigid and flexible walls through use of a non-linear contact algorithm. After a brief review of relevant scientific contributions, some test cases and application examples are presented.