• Title/Summary/Keyword: coupled-line band-pass filter

Search Result 45, Processing Time 0.024 seconds

GA-Optimized Compact Broadband CRLH Band-Pass Filter Using Stub-Inserted Interdigital Coupled Lines

  • Jeon, Jinsu;Kahng, Sungtek;Kim, Hyunsoo
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • The design of a new compact band-pass filter is proposed, which is based on the microstrip composite right- and left-handed transmission- line (CRLH-TL) structure. Particularly, the interdigital coupled (IDC) lines of the CRLH geometry are proposed to be parted by inserting open stubs to meet the specifications on the passband. In addition, there is another pair of stubs to complete the design in a limited space. These are considered in the TL-based analysis and the design parameters are calculated by genetic algorithm optimization. The measurement is shown to be acceptable and agreeable with the circuit and electromagnetic field simulations. In addition, the zerothorder resonance (ZOR) phenomenon is verified.

A Study on the Band-pass Filters in Microstrip Parallel Coupled-Lines for W-LAN Applications (마이크로스트립 평행결합선 방식의 무선LAN용 대역통과필터에 관한 연구)

  • Park, Chang-Hyun;Kim, Young-Nam;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.133-136
    • /
    • 2008
  • In this paper, the parallel coupled line(PCL) band-pass filter satisfying IEEE 802.11a (a:$5.15{\sim}5.25$, b:$5.25{\sim}5.35$, c:$5.725{\sim}5.875$ [GHz]) has been designed for 5[GHz]band W-Lan RX-System applications. The designed PCL Band-Pass filter is of advantage to make a design formula that is small, light and approximate accuracy. It choose a microstrip plane figure because it is possible that a multiplicity of resonator was designed. It was shown that bandwidth was 14% from 5.15GHz to 5.92GHz at the -3dB designed filter. As a result, it is enough to use the designed filter at W-LAN RX-system of the 5GHz band.

  • PDF

V-Band filter using Multilayer MCM-D Technology (MCM-D 공정기술을 이용한 V-BAND FILTER 구현에 관한 연구)

  • Yoo Chan-Sei;Song Sang-Sub;Part Jong-Chul;Kang Nam-Kee;Cha Jong-Bum;Seo Kwang-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.64-68
    • /
    • 2006
  • Novel system-on-package (SOP) - D technology to improve the mechanical and thermal properties of a MCM-D substrate was suggested. Based on this investigation, the two types of band pass filters for the V-band application with unique structure were designed and implemented using 2-metals, 3-BCB layers. The first type using distributed resonator had the insertion loss below 2.6 dB at 55 GHz and group delay was below 0.06 ns. For the second type with edge coupled structure, the insertion loss and group delay were 3 dB and 0.1 ns, respectively. Suggested MCM-D substrate with band pass filter can be used to evaluate mm-Wave system including flip-chip bonded MMIC.

Wideband Bandstop Filter Based on Capacitively Coupled λ/4 Short-Circuited Lines

  • Duong, Thai Hoa;Kim, Ihn-Seok
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • A new wideband bandstop filter(BSF) with a sharp roll-off characteristic is introduced in a stripline structure in this paper. The BSF consists of two sections: the first is two capacitively coupled $\lambda/4$ short-circuited lines with opposite ground positions, while the second is a capacitively coupled $\lambda/4$ short-circuited line. The BSF provides three transmission zeros within the stopband and better than 22 dB rejection over the whole wireless local area network (WLAN) band from 5.15 to 5.825 GHz. The BSF, cascaded to an U.S. ultra-wideband(UWB: 3.1~10.6 GHz) band-pass filter(BPF), is simulated with HFSS and realized with low-temperature co-fired ceramic(LTCC) green tape with a dielectric constant of 7.8. The measurement results agree well with the HFSS simulation results. The size of the UWB BPF including the BSF is $3{\times}6.3\times0.45\;mm^3$.

Design of Broad Band RF Components for Partial Discharge Monitoring System (부분방전 모니터링 시스템을 위한 광대역 RF 소자설계 연구)

  • Lee, Je-Kwang;Ko, Jae-Hyeong;Kim, Koon-Tae;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2286-2292
    • /
    • 2011
  • In this paper we present the design of Low Noise Amplifier(LNA), mixer and filter for RF front-end part of partial discharge monitoring system. The monitoring system of partial discharge in high voltage power machinery is used to prevent many kinds of industrial accidents, and is usually composed of three parts - sensor, RF front-end and digital microcontroller unit. In our study, LNA, mixer and filter are key components of the RF front-end. The LNA consists of common gate and common source-cascaded structure and uses the resistive feedback for broad band matching. A coupled line structure is utilized to implement the filter, of which size is reduced by the meander structure. The mixer is designed using dual gate structure for high isolation between RF and local oscillator signal.

Miniature Multilayer LTCC Bandpass Filter with Attenuation poles (감쇄극을 갖는 초소형 적층 LTCC 대역통과 필터)

  • Lee, Y.S.;Song, H.S.;Bang, K.S.;Kim, J.C.;Park, J.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.751-755
    • /
    • 2003
  • In this paper, We proposed compact multi-layer LTCC (Low Temperature Cofired Ceramic) bandpass filter for Bluetooth module. A ${\lambda}/4$ coupled stripline resonators are designed, which composed of coupled strip-line section and loading capacitance. This resonator with a loading capacitor has slow-wave characteristics. Due to the slow-wave effect of the proposed resonator, it is possible to design and fabricate a compact bandpass filter with a wide upper stop band. Attenuation poles in the lower stop band are achieved using controlling of electro-magnetic coupling between resonators. Using multi-layer LTCC technology, we designed and fabricated band pass filter with a finite attenuation pole and wide upper stopband. The overall size of the filter is $1.2{\times}2.0{\times}1.0mm^3$.

  • PDF

Dual-Band Compact Broad Band-Pass Filter with Parallel Coupled Line (평행 결합 선로를 갖는 이중 대역의 소형 광대역 대역 통과 필터의 설계)

  • Choi, Young-Gu;Shrestha, Bhanu;Yoon, Ki-Cheol;Lee, Jeong-Hun;Hong, Tae-Ui
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1423-1431
    • /
    • 2010
  • In this paper, the dual-band compact broad bandpass filter using parallel coupled line is proposed. The proposed filter has reduced size and can be controlled bandwidth. And it is also possible to operate in the dual-band purpose. Futhermore, the inserted bandstop fiilter with T-type configuration is also possible to operate in the same purpose. The dual-band bandpass filter has the first operating frequencies and its bandwidth which are 5.8 GHz and 60 % respectively and the second operating frequency and the bandwidth are 16.2 GHz and 60 % respectively. The insertion loss and the return loss of the first frequency has 0.4 dB and 17.4 dB and the insertion loss and the return loss of the second frequency has 0.62 dB and 19.8 dB, respectively.

Design of the Miniaturized UWB BandPass Filter Using the 1 Unit of CRLH-TL (일단 CRLH 전송선 구조를 이용한 소형 초광대역 대역 통과 여파기의 설계)

  • Ju, Jeong-Ho;Kahng, Sung-Tek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1402-1407
    • /
    • 2007
  • This paper presents a new design method of the Ultra-Wide-Band BandPass Filter using the CRLH-TL(Composite Right- and Left-Handed Transmission-line) having the Metamaterials' properties. Instead of the periodic type or many cells of the CRLH-TL, only the unit cell is used to miniaturize the target component, which can not be realized by the conventional quarter guided-wavelength resonator-based filters. Particularly, the strong coupling essential to the Ultra Wide Band is enabled by the interdigital coupled lines between the grounded stubs. The proposed design scheme is validated by the electromagnetic simulation and measurement of the fabricated filter which shows the total size of 'the guided-wavelength/9.4', the 100 % fractional bandwidth for the UWB, the insertion loss of less than 1 dB and the flat group-delay.

Modified Microstrip Filters Improving the Suppression Performance of Harmonic Signals (고조파 감쇠특성을 향상시킨 변형된 마이크로스트립 여파기)

  • 김봉수;이재욱;송명선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1054-1060
    • /
    • 2002
  • In this paper, a new parallel-coupled-line microstrip BPF(BandPass Filter) improving the suppression performance of 2nd harmonic signals is studied. Using the consecutive pattern in coupled-line, the desired passband performance is improved and harmonic passband signal is rejected. Recalculation of classical filter design parameters(space-gap between lines, line widths and lengths) is not required. That is, after using the classical design methodology for parellel-coupled-line BPF, new filters can be easily realized by inserting periodic patterns in coupled-line. To investigate the validity of this novel technique, order-3 Butterworth BPF centered at 2.5 GHz with a 10 % FBW(Fractional Bandwidth) and order-5 Chebyshev BPF centered at 10 GHz with a 15 % FBW were used. When five and three square grooves are used, over 30 dB harmonic suppression at 2nd harmonic is achieved in simulation and experiment.

Planar type high-$T_{c}$ Superconductor 11-pole Lowpass Filter for Suppression of Harmonics (고조파 억제용 고온초전도 평면형 11-극 저역통과 필터의 제작)

  • 강광용;김철수;곽민환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.159-162
    • /
    • 2002
  • The eleventh-order coupled line lowpass filter(LPF) was designed to suppress harmonics and spurious signals. The microstrip type LPF was fabricated using a high-$T_{c}$ superconductor(HTS) $YBa_{2}$$Cu_{3}$$O_{7-x}$(YBCO) thin film with the $CeO_{2}$ buffer layer which was deposited on the sapphire ($Al_{2}O_{3}$) substrate of 30 x 30 $mm^{2}$. The coupled-line type LPF was designed for 1.2 GHz of cutoff frequency with 0.01 dB of ripple level at passband. The fabricated HTS LPF shows excellent attenuation characteristics in stopband of 1.2~9.5GHz (7-attenuation poles in the stopband), and shows low insertion loss (0.2 dB) and return loss (17.1 dB) in the pass- band. These measured results match well with those obtained by the EM simulation. This clearly demonstrates that the HTS LPF can suppress harmonics and spurious signals effectively.

  • PDF