• Title/Summary/Keyword: coupled transcription/ translation system

Search Result 4, Processing Time 0.018 seconds

Assay of Epoxide Hydrolase Activity Based on PCR-linked in vitro Coupled Transcription and Translation System. (무세포 단백질합성 시스템 기반의 epoxide hydrolase 발현 및 활성 분석)

  • Lee, Ok-Kyung;Kim, Hee-Sook;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.779-782
    • /
    • 2005
  • Cell-free expression is a powerful tool for rapid protein analysis, enabling an efficient identification of gene without cumbersome procedure of transformation and cell culture. Epoxide hydrolase (EH) gene of Rhodotorula glutinis was simply amplified by PCR, and the resultant gene was expressed in vitro using a coupled Transcription/translation system. The cell-free expressed EH protein mixture exhibited the enantioselective hydrolysis activity toward (R)-styrene oxide, representing that cell-free protein synthesis system can be used for the rapid expression of an enantioselective enzyme for an efficient identification of the chiral activity.

P22-Based Challenge Phage Constructs to Study Protein-Protein Interactions between the $\sigma$$^{54}$-Dependent Promoter, dctA, and Its Transcriptional Regulators

  • Song, Jeong-Min;Kim, Eungbin;Lee, Joon H.
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.205-210
    • /
    • 2002
  • To study interactions between $C_{4}$-dicarboxylic acid transport protein D and E$\sigma$$^{54}$ in the dctA promoter regulatory region, we used the challenge phage system. An ant'-`lac fusion was recombined onto the challenge phage, and this ant'-`lac fusion along with Pant and the R. meliloti dctA promoter regulatory region were cloned onto a plasmid. The plasmid bearing the ant'-`lac fusion was used as a reporter plasmid in a coupled transcription-translation system. Addition of purified $\sigma$$^{54}$ to the coupled system specifically repressed transcription of the plasmid-borne ant'-`lac fusion. When DCTD was added along with $\sigma$$^{54}$ to the coupled system, transcription of the ant'-`lac fusion was even further repressed, suggesting that DCTD may stabilize closed complexes between E$\sigma$$^{54}$ and the dctA promoter.

Zeolite-Mediated Cation Exchange Enhances the Stability of mRNA during Cell-Free Protein Synthesis

  • Kim, You-Eil;Kim, Dong-Myung;Choi, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.258-261
    • /
    • 2006
  • The addition of zeolite particles enhances the stability of mRNA molecules in a cell-free protein synthesis system. When $20{\mu}g/{\mu}L$ of zeolite (Y5.4) is added to a reaction mixture of cell-free protein synthesis, a substantial increase in protein synthesis is observed. The stabilizing effect of zeolite is most dearly observed in an in vitro translation reaction directed by purified mRNA, as opposed to a coupled transcription and translation reaction. Upon the addition of zeolite in the in vitro translation reaction, the life span of the mRNA molecules is substantially extended, leading to an 80% increase in protein synthesis. The effect of zeolite upon the mRNA stability appears be strongly related to the cation exchange (potassium to sodium) reaction. Our results demonstrate the possibility of modifying this biological process using heterogeneous, non-biological substances in a cell-free protein synthesis system.

Biosynthesis of recombinant human prominiinsulin in E. coli and plant systems (대장균과 식물시스템에서 재조합 인간 prominiinsulin 생합성 분석)

  • Choi, Yu Jin;Park, Su Hyun;Kim, Ji Su;Wi, Soo Jin;Park, Ky Young
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.169-177
    • /
    • 2013
  • Recently, the number of people with diabetes is rapidly increasing, coupled with the fact that the insulin market is remarkably increasing. Therefore, molecular farming for plant-derived pharmaceutical protein production is reported as becoming more attractive than ever. In this study, we carried out experiments step by step for development of recombinant insulin constructs, which were transformed into E. coli system, in vitro transcription and translation system, and tobacco cells. At first, recombinant proinsulin protein was successfully produced in in vitro transcription and translation system with wheat germ extract. After which, recombinant construct of prominiinsulin encoded a fusion protein of 7.8 kDa with trypsin cleavage sites at N terminus and C terminus of minimized C-peptide was tried to in vitro expression using E.coli culture. After purification with His-tag column, the resulting recombinant prominiinsulin protein was processed with trypsin, and then checked insulin biosynthesis by SDS-PAGE and western blot analysis with anti-insulin monoclonal antibody. The immunoreactive product of trypsin-treated miniinsulin was identical to the predicted insulin hexamer. The construct of 35S promoter-driven preprominiinsulin recombinant gene with signal peptide region for ER-targeting and red fluorescence protein gene [N terminus ${\rightarrow}$ tobacco E2 signal peptide ${\rightarrow}$ B-peptide (1-29 AA) ${\rightarrow}$ AAK ${\rightarrow}$ A-peptide (1-21 AA) ${\rightarrow}$ RR ${\rightarrow}$ His6 ${\rightarrow}$ KDEL ${\rightarrow}$ C terminus] was transformed into BY-2 tobacco cells. A polypeptide corresponding to the 38-kDa molecular mass predicted for fusion protein was detected in total protein profiles from transgenic BY-2 cells by western analysis. Therefore, this recombinant preprominiinsulin construct can be used for generation of transgenic tobacco plants producing therapeutic recombinant insulin.