Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.5.779

Assay of Epoxide Hydrolase Activity Based on PCR-linked in vitro Coupled Transcription and Translation System.  

Lee, Ok-Kyung (Department of Food Science and Technology, Kyungsung University)
Kim, Hee-Sook (Department of Food Science and Technology, Kyungsung University)
Lee, Eun-Yeol (Marine and Extreme Genome Research Center)
Publication Information
Journal of Life Science / v.15, no.5, 2005 , pp. 779-782 More about this Journal
Abstract
Cell-free expression is a powerful tool for rapid protein analysis, enabling an efficient identification of gene without cumbersome procedure of transformation and cell culture. Epoxide hydrolase (EH) gene of Rhodotorula glutinis was simply amplified by PCR, and the resultant gene was expressed in vitro using a coupled Transcription/translation system. The cell-free expressed EH protein mixture exhibited the enantioselective hydrolysis activity toward (R)-styrene oxide, representing that cell-free protein synthesis system can be used for the rapid expression of an enantioselective enzyme for an efficient identification of the chiral activity.
Keywords
cell-free protein synthesis; enantioselective hydrolysis; epoxide hydrolase; coupled transcription/ translation system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, E. Y., S.-S. Yoo, H. S. Kim, S. J. Lee, Y.-K. Oh and S. Park 2004. Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis. Enzy. Microbial Technol. 35, 624-631   DOI   ScienceOn
2 Jung S. T., S. H. Kang, T. J. Kang, R. G. Kim, S. H. Suh, J. H. Woo, E. Y. Lee and C. Y. Choi. 1999. An efficient translational termination of human erythropoietin in Escherichia coli by altering the base following a stop codon. Biotechnol. Letters 13, 761-764
3 Kang, S. H., T. J. Oh, R. G. Kim, T. J. Kang, S. H. Hwang, E. Y. Lee and C. Y. Choi. 2000. An efficient cell-free protein synthesis system using periplasmic phosphatase-removed S30 extract. J. Micobiol.Methods 43, 91-96   DOI   ScienceOn
4 Katzen, F., G. Chang and W. Kudlicki. 2005. The past, present and future of cell-free protein synthesis. Trends in Biotechnol. 23, 150-156   DOI   ScienceOn
5 Steinreiber, A. and K. Faber. 2001. Microbial epoxide hydrolases for preparative biotransformations. Current Opinion in Biotechnol. 12, 552-558   DOI   ScienceOn
6 Zocher, F., M. Enzelberger, U. Bomscheuer, B. Hauer and R. Schmid. 1999. A colorimetric assay suitable for screening epoxide hydrolase activity. Analitica Chemica Acta 391, 345-351   DOI   ScienceOn
7 Genzel, Y., A. Archelas, Q. B. Broxterman, B. Schulze and R. Furstoss. 2002. Microbiological transformation 50: selection of epoxide hydrolase for enzymatic resolution of 2-, 3-, or 4-pyridyloxirane. J. Mol. Catal. B: Enzy. 16, 217-222   DOI   ScienceOn
8 Archelas, A. and R. Furstoss. 2001. Synthetic applications of epoxide hydro lases. Current Opinion in Chem. Biol. 5, 112-119   DOI   ScienceOn
9 Besse, P. and H. Veschambre. 1994. Chemical and biological synthesis of chiral epoxides. Tetrahedron 50, 8885-8927   DOI   ScienceOn
10 Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee and C. Y. Choi. 1998. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol. Tech. 12, 225-228   DOI
11 Jung, G. Y., E. Y. Lee, Y. -E. Kim, B. W. Jung, S.-H. Kang and C. Y. Choi. 2000. Stabilization effect of zeolite on DHFR mRNA in a wheat germ cell-free protein synthesis system. J. Biosci. Bioeng. 89, 193-195   DOI   ScienceOn