• Title/Summary/Keyword: coupled properties

Search Result 1,003, Processing Time 0.02 seconds

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.

Effects of High-Molecular-Weight Glutenin Subunits and Agronomic Traits on Bread Wheat Quality Parameters (밀의 고분자 글루테닌 조성과 농업 형질이 품질 특성에 미치는 영향)

  • Cha, Jin-Kyung;Shin, Dongjin;Park, Hyeonjin;Kwon, Youngho;Lee, So-Myeong;Ko, Jong-Min;Lee, Jong-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • Improving flour quality is one of the major targets of wheat breeding programs. This study determined the optimum high-molecular-weight glutenin subunits (HMW-GS) to improve flour quality, and analyzed the correlation between agronomic and quality traits in Korea. A total of 180 wheat varieties, including 55 Korean and 125 foreign cultivars, carrying various Glu-1 alleles, were evaluated for their quality and agronomic traits. Results indicated that Glu-A1b, Glu-B1b, and Glu-D1f were the most prevailing alleles for each Glu-1 locus for Korean wheat cultivars. Korean wheat cultivars recorded shorter days to heading (DTH) and longer days to maturity (DTM) compared to foreign cultivars. In addition, an interaction effect was found between Glu-A1 and Glu-B1 alleles on several quality parameters. The combination of Glu-A1c and Glu-B1i showed a higher protein content, dry gluten content, and higher sodium dodecyl sulfate (SDS) sedimentation value than other Glu-A1×Glu-B1 combinations. Cultivars carrying Glu-A1a or Glu-A1b, Glu-B1i or Glu-B1al, and Glu-D1d for each Glu-1 locus exhibited a longer mixing time and stronger mixing tolerance. The DTM positively correlated with the protein content, gluten index and SDS sedimentation value. However, a negative correlation was observed between DTH and quality traits. Owing to the above results, this study suggests that an increase in the frequency of Glu-B1i or Glu-B1al, Glu-D1d coupled with a short DTH and long DTM could significantly improve wheat quality properties.