Browse > Article
http://dx.doi.org/10.7740/kjcs.2022.67.2.111

Effects of High-Molecular-Weight Glutenin Subunits and Agronomic Traits on Bread Wheat Quality Parameters  

Cha, Jin-Kyung (National Institute of Crop Science, RDA)
Shin, Dongjin (National Institute of Crop Science, RDA)
Park, Hyeonjin (National Institute of Crop Science, RDA)
Kwon, Youngho (National Institute of Crop Science, RDA)
Lee, So-Myeong (National Institute of Crop Science, RDA)
Ko, Jong-Min (National Institute of Crop Science, RDA)
Lee, Jong-Hee (National Institute of Crop Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.67, no.2, 2022 , pp. 111-120 More about this Journal
Abstract
Improving flour quality is one of the major targets of wheat breeding programs. This study determined the optimum high-molecular-weight glutenin subunits (HMW-GS) to improve flour quality, and analyzed the correlation between agronomic and quality traits in Korea. A total of 180 wheat varieties, including 55 Korean and 125 foreign cultivars, carrying various Glu-1 alleles, were evaluated for their quality and agronomic traits. Results indicated that Glu-A1b, Glu-B1b, and Glu-D1f were the most prevailing alleles for each Glu-1 locus for Korean wheat cultivars. Korean wheat cultivars recorded shorter days to heading (DTH) and longer days to maturity (DTM) compared to foreign cultivars. In addition, an interaction effect was found between Glu-A1 and Glu-B1 alleles on several quality parameters. The combination of Glu-A1c and Glu-B1i showed a higher protein content, dry gluten content, and higher sodium dodecyl sulfate (SDS) sedimentation value than other Glu-A1×Glu-B1 combinations. Cultivars carrying Glu-A1a or Glu-A1b, Glu-B1i or Glu-B1al, and Glu-D1d for each Glu-1 locus exhibited a longer mixing time and stronger mixing tolerance. The DTM positively correlated with the protein content, gluten index and SDS sedimentation value. However, a negative correlation was observed between DTH and quality traits. Owing to the above results, this study suggests that an increase in the frequency of Glu-B1i or Glu-B1al, Glu-D1d coupled with a short DTH and long DTM could significantly improve wheat quality properties.
Keywords
agronomic traits; high-molecular-weight glutenin subunits; quality; wheat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carter, A. H., D. K. Santra, and K. K. Kidwell. 2012. Assessment of the effects of the Gpc-B1 allele on senescence rate, grain protein concentration and mineral content in hard red spring wheat (Triticum aestivum L.) from the Pacific northwest region of the USA. Plant breed. 131(1) : 62-68.   DOI
2 Kaya, Y. and M. Akcura. 2014. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci. Technol. 34 : 386-393.   DOI
3 Kim, H. S., Y. J. Kim, K. H. Kim, H. H. Park, C. S. Kang, K. H. Kim, J. N. Hyun, and K. J. Kim. 2013. Different of agricultural characteristics and quality with fertilizer type in wheat cultivation. Korean J. Crop Sci. 58(1) : 15-19.   DOI
4 Kiszonas, A. M. and C. F. Morris. 2018. Wheat breeding for quality: a historical review. Cereal Chem. 95(1) : 17-34.
5 Liu, S., S. Chao, and J. A. Anderson. 2008. New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet. 118 : 177-183.   DOI
6 Luo, C., W. B. Griffin, G. Branlard, and D. L. McNeil. 2001. Comparison of low- and high molecular-weight wheat glutenin allele effects on flour quality. Theor Appl Genet. 102 : 1088-1098.   DOI
7 Maich, R. H., M. E. Steffolani, J. A. Di Rienzo, and A. E. Leon. 2017. Association between grain yield, grain quality and morpho-physiological traits along ten cycles of recurrent selection in bread wheat (Triticum aestivum L.). Cereal Res. Commun. 45(1) : 146-153.   DOI
8 Johansson, E., G. Svensson, and S. Tsegaye. 2000. Genotype and environment effects on bread-making quality of Swedish-grown wheat cultivars containing high-molecular-weight glutenin subunits 2+12 or 5+10. Acta Agric. Sect. B, Soil and Plant Sci. 49 : 225-233.
9 Gao, S., G. Sun, W. Liu, D. Sun, Y. Peng, and X. Ren. 2020. High-molecular-weight glutenin subunit compositions in current Chinese commercial wheat cultivars and the implication on Chinese wheat breeding for quality. Cereal Chem. 97(4) : 762-771.   DOI
10 Mohan, D. and R. K. Gupta. 2015. Relevance of physiological efficiency in wheat grain quality and the prospects of improvement. Physiol. Mol. Biol. Plants. 21(4) : 591-596.   DOI
11 Park, D. S., J. M. Ko, S. I. Han, S. K. Oh, J. N. Hyun, D. Y. Suh, D. C. Shin, and H. P. Moon. 2002. Effect of HMW glutenin subuit composition on baking quality traits in wheat. Korean J. Breed. Sci. 34(1) : 15-21.
12 Payne, P. I. 1987. Genetics of wheat storage protein and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol. 38 : 141-153.   DOI
13 Rasheed, A., W. Wen, F. Gao, S. Zhai, H. Jin, J. Liu, Q. Guo, Y. Zhang, S. Dreisigacker, X. Xia, and Z. He. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor. Appl. Genet. 129(10) : 1843-1860.   DOI
14 Rasheed, A., X. Xia, Y. Yan, R. Appels, T. Mahmood, and Z. He. 2014. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J. Cereal Sci. 60(1) : 11-24.   DOI
15 Shewry, P. R., R. D'ovidio, D. Lafiandra, J. A. Jenkins, E. N. C. Mills, and F. Bekes. 2009. Wheat grain proteins. In: KHAN, K.; SHEWRY, P.R. (Ed.) Wheat: chemistry and technology. 4th ed. St. Paul: AACC International. 2009. pp. 223-298.
16 Shewry, P. R. 2009. Wheat. J. Exp. Bot. 60(6) : 1537-1553.   DOI
17 Shin, D., J. K. Cha, S. M. Lee, J. M. Ko, and J. H. Lee. 2020b. Validation and selection of functional allele-specific molecular markers to analyze high-molecular-weight gluten subunits composition in wheat. 2020. Korean J. Breed. Sci. 52(3) : 235-243.   DOI
18 Son, J. H., C. S. Kang, Y. M. Yoon, C. H. Choi, K. H. Kim, K. M. Kim, T. I. Park, T. G, Kang, S. W. Kang, C. S. Park, and S. W. Cho. 2019. Effect of high temperature during grain maturation on flour properties and end-use quality in Korean wheat cultivars. Korean J. Breed. Sci. 51(1) : 20-33.   DOI
19 Terasawa, Y., M. Ito, T. Tabiki, K. Nagasawa, K. Hatta, and Z. Nishio. 2016. Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.). Breed. Sci. 66(4) : 471-480.   DOI
20 Vancini, C., G. A. M. Torres, M. Z. Miranda, L. Consoli, S. Bonow, and M. F. Grando. 2019. Impact of high-molecular-weight glutenin alleles on wheat technological quality. Qesq. Agropec. Bras. [online] 54 : e00639.   DOI
21 Wrigley, C., R. Asenstorfer, I. Batey, G. Cornish, L. Day, D. Mares, and K. Mrva. 2009. The biochemical and molecular basis of wheat quality. In Wheat science and trade.
22 Xu, Q., J. Xu, C. L. Liu, C. Chang, C. P. Wang, M. S. You, B. Y. Li, and G. T. Liu. 2008. PCR-based markers for identification of HMW-GS at Glu-B1x loci in common wheat. J. Cereal Sci. 47 : 394-398.   DOI
23 RDA (Rural Development Administration). 2014. Blending model for composite flour from domestic and improted wheat flour based on their composition properties. pp. 13-17.
24 Shin, D., J. K. Cha, S. M. Lee, N. R. Kabange, and J. H. Lee. 2020a. Rapid and easy high-molecular-weight glutenin subunit identification system by lab-on-a-chip in wheat (Triticum aestivum L.). Plants, 9(11) : 1517.   DOI
25 Park, C. S., C. S. Kang, J. U. Jeung, and S. H. Woo. 2011. Influence of allelic variations in glutenin on the quality of pan bread and white salted noodles made from Korean wheat cultivars. Euphytica. 180(2) : 235-250.   DOI
26 Payne, P. I., M. A. Nightingale, A. F. Krattiger, and L. M. Holt. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 40 : 51-65.   DOI
27 RDA (Rural Development Administration). 2012. Manual for standard evaluation method in agricultural experiment and research. pp. 315-374.
28 Axford, D. W. E., E. E. McDermott, and D. G. Redman. 1979. Note on the sodium dodecylsulfate test of bread making quality: Comparison with Pelshenke and Zeleny tests. Ceral Chem. 56 : 582-584.
29 Bordes, J., G. Branlard, F. X. Oury, G. Charmet, and F. Balfourier. 2008. Agronomic characteristics, grain quality and flour rheology of 372 bread wheats in a worldwide core collection. J. Cereal Sci. 48(3) : 569-579.   DOI
30 Dessalegn, T., C. S. Van Deventer, M. T. Labuschagne, and H. Martens. 2011. Allelic variation of HMW glutenin subunits of Ethiopian bread wheat cultivars and their quality. Afr. Crop. Sci. J. 19(2) : 55-63.
31 Islam, S., Z. Yu, M. She, Y. Zhao, and W. Ma. 2019. Wheat gluten protein and its impacts on wheat processing quality. Front. Agric. Sci. Eng. 6(3) : 279-287.   DOI
32 Costa, M. S., M. B. D. S. Scholz, and C. M. L. Franco. 2013. Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes. Food Sci. Technol. 33 : 163-170.   DOI
33 He, Z.H., L. Liu, X. C. Xia, J. J. Liu, and R. J. Pena. 2005. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheat. Cereal Chem. 82(4) : 345-350.   DOI
34 AACCI. 2010. Approved methods of analysis. 11th ed. AACC International, St. Paul, MN, USA. Method 38-12.02, 44-15-02, 46-30.01, 54-40.02.
35 Abdipour, M., M. Ebrahimi, A. Izadi-Darbandi, A. M. Mastrangelo, G. Najafian, Y. Arshad, and G. Mirniyam. 2016. Association between grain size and shape and quality traits, and path analysis of thousand grain weight in Iranian bread wheat landraces from different geographic regions. Not Bot Horti Agrobo. 44(1) : 228-236.   DOI
36 Aydin, N., C. Sermet, Z. Mut, H. O. Bayramoglu, and H. Ozcan. 2010. Path analyses of yield and some agronomic and quality traits of bread wheat (Triticum aestivum L.) under different environments. Afr. j. biotechnol. 9(32) : 5131-5134.
37 Branlard, G., M. Dardevet, R. Saccomano, F. Lagoutte, and J. Gourdon. 2001. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica. 119: 59-67.   DOI