• Title/Summary/Keyword: coupled properties

Search Result 991, Processing Time 0.026 seconds

Synthesis and Optical Recording Properties of Coupled Hemicyanine Salts for DVD-R

  • Lee, Chul-Joo;Min, Kyung-Sun;Park, Ki-Hong
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.209-214
    • /
    • 2003
  • A series of coupled-hemicyanine dyes with alkylene spacer were successfully synthesized by a reaction of coupled aldehydes with corresponding salts, respectively. These coupled dyes had more excellent thermal properties (high decomposition temperature, stiff decomposition behavior) and higher molar absorption properties than an uncoupled dye. The coupled dyes with perchlorate anions showed the strongest exothermic decomposition while those with hexafluorophosphorate anions showed endothermic decomposition. As the coupling length (n=3, 4, 5, 6) increased, thermal properties decreased and dyes with even spacer was more thermally stable than dyes with odd spacer. Among several coupled dyes, C4-NP-ClO4 and C4-Cl-ClO4 exhibited the best recording properties with the lowest jitter value of 7.5∼9.5% in authoring disc.

  • PDF

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Microstrcture and Mechanical Properties of HfN Films Deposited by dc and Inductively Coupled Plasma Assisted Magnetron Sputtering (직류 및 유도결합 플라즈마 마그네트론 스퍼터링법으로 제조된 HfN 코팅막의 미세구조 및 기계적 물성연구)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.67-71
    • /
    • 2020
  • For deposition technology using plasma, it plays an important role in improving film deposited with high ionization rate through high density plasma. Various deposition methods such as high-power impulse magnetron sputtering and ion-beam sputtering have been developed for physical vapor deposition technology and are still being studied. In this study, it is intended to control plasma using inductive coupled plasma (ICP) antennas and use properties to improve the properties of Hafnium nitride (HfN) films using ICP assisted magnetron sputtering (ICPMS). HfN film deposited using ICPMS showed a finer grain sizes, denser microstructure and better mechanical properties as ICP power increases. The best mechanical properties such as nanoindentation hardness of 47 GPa and Young's modulus of 401 GPa was obtained from HfN film deposited using ICPMS at ICP power of 200 W.

COUPLED N-STRUCTURES APPLIED TO IDEALS IN d-ALGEBRAS

  • Ahn, Sun Shin;Ko, Jung Mi
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.709-721
    • /
    • 2013
  • The notions of coupled N-subalgebra, coupled (positive implicative) N-ideals of $d$-algebras are introduced, and related properties are investigated. Characterizations of a coupled $\mathcal{N}$-subalgebra and a coupled (positive implicative) $\mathcal{N}$-ideals of $d$-algebras are given. Relations among a coupled $\mathcal{N}$-subalgebra, a coupled $\mathcal{N}$-ideal and a coupled positive implicative $\mathcal{N}$-ideal of $d$-algebras are discussed.

Room Acoustic Properties of Coupled Rooms Connected by an Aperture in the Steady State Condition (정상상태조건에서의 개구부로 연결된 커플룸의 음향 특성)

  • Na, Hae Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.315-322
    • /
    • 2016
  • Room acoustic properties of coupled rooms connected by an aperture has been analyzed using statistical acoustic model based on the diffused sound field assumption, which has limitation in dealing with the parameters such an room geometries and non uniform absorptivity of the boundary surfaces. In order to overcome these difficulties the acoustic diffusion model has been introduced, by which distribution of the acoustic energy density can be analyzed for various shapes and wall absorptivity. In this study acoustic properties of coupled rooms connected by an aperture(e.g. door) is analyzed using acoustic diffusion equation, which is solved numerically. The mean energy densities of two rooms obtained by the diffusion model are compared with those from the statistical model. The results show good agreement for various coupling aperture sizes and absorption coefficients. For a limiting case when the partition wall is substituted by an aperture and the two rooms eventually forms a single room, results of coupled room analysis using diffusion model show good agreement with those of a single room.

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

APPLICATIONS OF COUPLED N-STRUCTURES IN BH-ALGEBRAS

  • Seo, Min Jeong;Ahn, Sun Shin
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.585-596
    • /
    • 2012
  • The notions of a $\mathcal{N}$-subalgebra, a (strong) $\mathcal{N}$-ideal of BH-algebras are introduced, and related properties are investigated. Characterizations of a coupled $\mathcal{N}$-subalgebra and a coupled (strong) $\mathcal{N}$-ideals of BH-algebras are given. Relations among a coupled $\mathcal{N}$-subalgebra, a coupled $\mathcal{N}$-ideal and a coupled strong $\mathcal{N}$ of BH-algebras are discussed.

Effect of Inductively Coupled Plasma (ICP) Power on the Properties of Ultra Hard Nanocrystalline TiN Coatings (유도결합 플라즈마 파워변화에 따른 초경도 나노결정질 TiN 코팅막의 물성변화)

  • Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.212-217
    • /
    • 2013
  • Ultra hard TiN coatings were fabricated by DC and ICP (inductively coupled plasma) magnetron sputtering techniques. The effects of ICP power, ranging from 0 to 300 W, on the coating microstructure, crystallographic, and mechanical properties were systematically investigated with FE-SEM, AFM, HR-XRD and nanoindentation. The results show that ICP power has a significant influence on the coating microstructure and mechanical properties of TiN coatings. With an increasing ICP power, the film microstructure evolves from an apparent columnar structure to a highly dense one. Grain sizes of TiN coatings decreased from 12.6 nm to 8.7 nm with an increase of the ICP power. A maximum nanohardness of 67.6 GPa was obtained for the coatings deposited at an ICP power of 300 W. The crystal structure and preferred orientation in the TiN coatings also varied with the ICP power, exerting an effective influence on film nanohardness.

Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping

  • Yamaguchi, Hiroki;Matsumoto, Yasunao;Yoshioka, Tsutomu
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.523-541
    • /
    • 2015
  • Structural health monitoring of steel truss bridge based on changes in modal properties was investigated in this study. Vibration measurements with five sensors were conducted at an existing Warren truss bridge with partial fractures in diagonal members before and after an emergency repair work. Modal properties identified by the Eigensystem Realization Algorithm showed evidences of increases in modal damping due to the damage in diagonal member. In order to understand the dynamic behavior of the bridge and possible mechanism of those increases in modal damping, theoretical modal analysis was conducted with three dimensional frame models. It was found that vibrations of the main truss could be coupled internally with local vibrations of diagonal members and the degree of coupling could change with structural changes in diagonal members. Additional vibration measurements with fifteen sensors were then conducted so as to understand the consistency of those theoretical findings with the actual dynamic behavior. Modal properties experimentally identified showed that the damping change caused by the damage in diagonal member described above could have occurred in a diagonal-coupled mode. The results in this study imply that damages in diagonal members could be detected from changes in modal damping of diagonal-coupled modes.