Commun. Korean Math. Soc. **28** (2013), No. 4, pp. 709–721 http://dx.doi.org/10.4134/CKMS.2013.28.4.709

COUPLED \mathcal{N} -STRUCTURES APPLIED TO IDEALS IN d-ALGEBRAS

Sun Shin Ahn and Jung Mi Ko

ABSTRACT. The notions of coupled \mathcal{N} -subalgebra, coupled (positive implicative) \mathcal{N} -ideals of *d*-algebras are introduced, and related properties are investigated. Characterizations of a coupled \mathcal{N} -subalgebra and a coupled (positive implicative) \mathcal{N} -ideals of *d*-algebras are given. Relations among a coupled \mathcal{N} -subalgebra, a coupled \mathcal{N} -ideal and a coupled positive implicative \mathcal{N} -ideal of *d*-algebras are discussed.

1. Introduction

J. Neggers and H. S. Kim ([14]) introduced the idea of a *d*-algebra as a generalization of BCK-algebras introduced by Y. Imai and K. Iséki ([8]). This class of algebras has been studied in rather great detail and is of current interest to many researchers ([3, 4, 10, 12, 13]). Beside *d*-algebras, other generalizations of BCK-algebras include the class of BCI-algebras, also introduced by Y. Imai and K. Iséki ([7]), the class of BCH-algebras, introduce by Q. P. Hu and X. Li ([5, 6]), of which the class of *BCI*-algebras is a proper subclass. The class of BCK-algebras is a proper subclass of the class of d-algebras, and it has been shown that many constructions on the class of d-algebras leave this class invariant, but not so the class of BCK-algebras. For example, the mirror algebra of a d-algebra is a d-algebra, but the mirror algebra of a BCK-algebra is not necessarily a BCK-algebra ([3]). J. Neggers, Y. B. Jun and H. S. Kim ([13]) have studied the ideal theory of *d*-algebras, introducing the notions of *d*-subalgebra, d-ideal, $d^{\#}$ -ideal and d^{*} -ideal, and various relations among them. After that some further aspects were studied in [1, 4, 10, 12]. In [1], S. S. Ahn and K. H. Han introduced the notion of \mathcal{N} -subalgebras, (positive implicative) \mathcal{N} -ideals of d-algebras and investigated their related properties. Jun et al. ([9]) introduced the notion of coupled \mathcal{N} -structures and its application in BCK/BCI-algebras was discussed.

O2013 The Korean Mathematical Society

Received October 20, 2012.

²⁰¹⁰ Mathematics Subject Classification. 06D72, 06F35, 03G25.

Key words and phrases. coupled N-structure, coupled N-subalgerba, coupled N-ideal, coupled positive implicative N-ideal.

In this paper, we introduce the notion of coupled \mathcal{N} -structures, and discuss its application in *d*-algebras. We introduce the notions of a coupled \mathcal{N} -subalgerba, a coupled \mathcal{N} -ideal and a coupled positive implicative \mathcal{N} -ideal, and investigate their relations. We discuss characterizations of a coupled \mathcal{N} -ideal and a coupled positive implicative \mathcal{N} -ideal.

2. Preliminaries

A *d*-algebra ([14]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

- (I) x * x = 0,
- (II) 0 * x = 0,
- (III) x * y = 0 and y * x = 0 imply x = y for all $x, y \in X$.

For brevity we also call X a *d*-algebra. In X, we can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0.

A BCK-algebra is a d-algebra (X; *, 0) satisfying the additional axioms:

(IV) ((x * y)) * (x * z)) * (z * y) = 0,(V) (x * (x * y)) * y = 0 for all $x, y, z \in X.$

Example 2.1 ([13]). Let \mathbb{R} be the set of all real numbers and define $x * y := -x(x-y), x, y \in \mathbb{R}$, where "." and "-" are the ordinary product and subtraction of real numbers. Then x * x = 0, 0 * x = 0. If x * y = y * x = 0, then x(x-y) = y(y-x) and so (x-y)(x+y) = 0. Hence x = y or x = -y. If x = -y, then 0 = x*(-x) = -x(x+x) and $0 = -x*x = -(-x)((-x)-x) = x(-2x) = -2x^2$. Thus x = y = 0. Hence x = y. Therefore $(\mathbb{R}; *, 0)$ is a *d*-algebra, but not a *BCK*-algebra, since $5 * 0 = -5^2 = -25 \neq 5$.

Definition 2.2 ([13]). Let (X; *, 0) be a *d*-algebra and $\emptyset \neq I \subseteq X$. *I* is a *d*-subalgebra of *X* if $x * y \in I$ whenever $x \in I$ and $y \in I$. *I* is called a *BCK-ideal* (briefly, an *ideal*) of *X* if it satisfies:

$$(D_0) \quad 0 \in I,$$

 $(D_1) \ x * y \in I \text{ and } y \in I \text{ imply } x \in I.$

I is called a *d*-ideal of X if it satisfies (D_1) and

 (D_2) $x \in I$ and $y \in X$ imply $x * y \in I$, i.e., $I * X \subseteq I$.

I is called a $d^{\#}$ -ideal of X if it satisfies $(D_1), (D_2)$ and

 (D_3) $x * z \in I$ whenever $x * y \in I$ and $y * z \in I$ for any $x, y, z \in X$.

I is called a d^* -ideal of X if it satisfies $(D_1), (D_2), (D_3)$ and

 (D_4) $x * y \in I$ and $y * x \in I$ imply $(x * z) * (y * z) \in I$ and $(z * x) * (z * y) \in I$ for any $x, y, z \in X$.

711

Example 2.3 ([14]). (a) Let $X := \{0, a, b, c, d\}$ be a *d*-algebra which is not a *BCK*-algebra with the following table:

*	0	a	b	c	d
0	0	0	$\begin{array}{c} 0\\ a\\ 0\\ b\\ a \end{array}$	0	0
a	a	0	a	0	a
b	b	b	0	c	0
c	c	c	b	0	c
d	c	c	a	a	0

Then $L := \{0, a\}$ is a *d*-ideal which is not a $d^{\#}$ -ideal of X, since $b * d = 0 \in L$, $d * c = a \in L$, but $b * c = c \notin L$.

(b) Let $X := \{0, a, b, c\}$ be a *d*-algebra which is not a *BCK*-algebra with the following table:

*	0	a	b	c
0	0	0	0	0
$a \\ b$	a	0	0	a
b	c	b	0	c
c	c	b	b	0

Then $I := \{0, a\}$ is a $d^{\#}$ -ideal, but not a d^* -ideal, since $0 * a = 0 \in I$ and $a * 0 = a \in I$, but $(c * 0) * (c * a) = c * b = b \notin I$.

(c) Let $X:=\{0,a,b,c\}$ be a d-algebra which is not a BCK-algebra with the following table:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	0
c	c	$egin{array}{c} 0 \\ 0 \\ b \\ c \end{array}$	a	0

Then $J := \{0, a\}$ is a d^* -ideal of X.

Note that d^* -ideal $\subsetneq d^{\#}$ -ideal $\subsetneq d$ -ideal in a d-algebra (see [14]).

Definition 2.4 ([14]). Let (X; *, 0) be a *d*-algebra and $x \in X$. Define $x * X := \{x * a \mid a \in X\}$. X is said to be *edge* if for any $x \in X$, $x * X = \{x, 0\}$.

Lemma 2.5 ([14]). Let (X; *, 0) be an edge d-algebra. Then x * 0 = x for any $x \in X$.

Definition 2.6 ([13]). A *d*-algebra X is called a d^* -algebra if it satisfies the identity (x * y) * x = 0 for all $x, y \in X$.

Clearly, a BCK-algebra is a d^* -algebra, but the converse need not be true (see [13]).

Theorem 2.7 ([13]). In a d^{*}-algebra, every BCK-ideal is a d-ideal.

Corollary 2.8 ([13]). In a d^{*}-algebra, every BCK-ideal is a d-subalgebra.

Definition 2.9 ([1]). Let (X; *, 0) be a *d*-algebra, and let $\emptyset \neq I \subseteq X$. *I* is called a *positive implicative ideal* if it satisfies, for all $x, y, z \in X$,

(i) $0 \in I$,

(ii) $(x * y) * z \in I$ and $y * z \in I$ imply $x * z \in I$.

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\bigvee \{a_i \mid i \in \Lambda\} := \begin{cases} \max\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \sup\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$
$$\bigwedge \{a_i \mid i \in \Lambda\} := \begin{cases} \min\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that an element of $\mathcal{F}(X, [-1, 0])$ is a *negative-valued function* from X to [-1, 0] (briefly, \mathcal{N} -function on X). By an \mathcal{N} -structure we mean an ordered pair (X, f) of X and an \mathcal{N} -function f on X. We define an order relation " \ll " on $[-1, 0] \times [-1, 0]$ as follows:

 $\left(\forall (r_1,k_1), (r_2,k_2) \in [-1,0] \times [-1,0]\right) \left((r_1,k_1) \ll (r_2,k_2) \iff r_1 \le r_2, \ k_1 \ge k_2 \right).$

3. Coupled \mathcal{N} -structures applied to subalgebras and ideals in *d*-algebras

Definition 3.1 ([9]). A coupled \mathcal{N} -structure \mathcal{C} in a nonempty set X is an object of the form

$$\mathcal{C} = \{ \langle x; f_{\mathcal{C}}, g_{\mathcal{C}} \rangle : x \in X \},\$$

where $f_{\mathcal{C}}$ and $g_{\mathcal{C}}$ are \mathcal{N} -functions on X such that $-1 \leq f_{\mathcal{C}}(x) + g_{\mathcal{C}}(x) \leq 0$ for all $x \in X$.

A coupled \mathcal{N} -structure $\mathcal{C} = \{\langle x; f_{\mathcal{C}}, g_{\mathcal{C}} \rangle : x \in X\}$ in X can be identified to an ordered pair $(f_{\mathcal{C}}, g_{\mathcal{C}})$ in $\mathcal{F}(X, [-1, 0]) \times \mathcal{F}(X, [-1, 0])$. For the sake of simplicity, we shall use the notation $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ instead of $\mathcal{C} = \{\langle x; f_{\mathcal{C}}, g_{\mathcal{C}} \rangle : x \in X\}$.

For a coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in X and $t, s \in [-1, 0]$ with $t + s \ge -1$, the set

$$\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\} = \{x \in X \mid f_{\mathcal{C}}(x) \le t, \ g_{\mathcal{C}}(x) \ge s\}$$

is called an $\mathcal{N}(t, s)$ -level set of $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$. An $\mathcal{N}(t, t)$ -level set of $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is called an \mathcal{N} -level set of $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$.

Definition 3.2. A coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a *d*-algebra X is called a *coupled* \mathcal{N} -subalgebra of X if it satisfies:

(3.1)
$$f_{\mathcal{C}}(x*y) \leq \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\}$$
 and $g_{\mathcal{C}}(x*y) \geq \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\}$

for all $x, y \in X$.

Theorem 3.3. A coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a d-algebra X is a coupled \mathcal{N} -subalgebra of X if and only if the nonempty $\mathcal{N}(t, s)$ -level set $\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$ is a subalgebra of X for all $t, s \in [-1, 0]$ with $t + s \ge -1$.

Proof. Assume that $C = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is a coupled \mathcal{N} -subalgebra of a *d*-algebra X. Let $t, s \in [-1, 0]$ with $t + s \ge -1$ and $x, y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$. Then $f_{\mathcal{C}}(x) \le t$, $f_{\mathcal{C}}(y) \le t$, $g_{\mathcal{C}}(x) \ge s$, and $g_{\mathcal{C}}(y) \ge s$. If follows from (3.1) that

$$f_{\mathcal{C}}(x * y) \le \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\} \le t \text{ and } g_{\mathcal{C}}(x * y) \ge \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\} \ge s$$

so that $x * y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$. Hence the nonempty $\mathcal{N}(t, s)$ -level set $\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$ is a subalgebra of X for all $t, s \in [-1, 0]$ with $t + s \ge -1$.

Conversely, suppose that the nonempty $\mathcal{N}(t, s)$ -level set $\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$ is a subalgebra of a *d*-algebra X for all $t, s \in [-1, 0]$ with $t + s \geq -1$. Let $x, y \in X$ be such that $\mathcal{C}(x) = (t_x, s_x)$ and $\mathcal{C}(y) = (t_y, s_y)$, that is, $f_{\mathcal{C}}(x) = t_x$, $g_{\mathcal{C}}(x) = s_x$, $f_{\mathcal{C}}(y) = t_y$, and $g_{\mathcal{C}}(y) = s_y$ with $-1 \leq t_x + s_x$ and $-1 \leq t_y + s_y$. Then $x \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_x, s_x)\}$ and $y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_y, s_y)\}$. We may assume that $(t_x, s_x) \ll (t_y, s_y)$ without loss of generality. Then

$$\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_x, s_x)\} \subseteq \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_y, s_y)\},\$$

and so $x, y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_y, s_y)\}$. Since $\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_y, s_y)\}$ is a subalgebra of X, it follows that $x * y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_y, s_y)\}$ so that

$$f_{\mathcal{C}}(x * y) \le t_y = \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\}$$
 and $g_{\mathcal{C}}(x * y) \ge s_y = \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\}.$

 \square

Therefore $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in X is a coupled \mathcal{N} -subalgebra of X.

Lemma 3.4. Every coupled \mathcal{N} -subalgebra $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ of a d-algebra X satisfies $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(x)$ for all $x \in X$.

Proof. For any $x, y \in X$, we have

$$f_{\mathcal{C}}(0) = f_{\mathcal{C}}(x * x) \le \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(x)\} = f_{\mathcal{C}}(x)$$

and

$$g_{\mathcal{C}}(0) = g_{\mathcal{C}}(x * x) \ge \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(x)\} = g_{\mathcal{C}}(x).$$

This completes the proof.

Proposition 3.5. Let X be an edge d-algebra. If every \mathcal{N} -subalgebra $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ of X satisfies the inequalities $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(y)$ and $g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(y)$ for any $x, y \in X$, then $f_{\mathcal{C}}$ and $g_{\mathcal{C}}$ are constant functions.

Proof. Let $x \in X$. Using Lemma 2.5 and assumption, we have $f_{\mathcal{C}}(x) = f_{\mathcal{C}}(x * 0) \leq f_{\mathcal{C}}(0)$ and $g_{\mathcal{C}}(x) = g_{\mathcal{C}}(x * 0) \geq g_{\mathcal{C}}(0)$. It follows from Lemma 3.4 that $f_{\mathcal{C}}(x) = f_{\mathcal{C}}(0)$ and $g_{\mathcal{C}}(x) = g_{\mathcal{C}}(0)$. Hence $f_{\mathcal{C}}$ and $g_{\mathcal{C}}$ are constant functions. \Box

Definition 3.6. A coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a *d*-algebra X is called a *coupled* \mathcal{N} -*ideal* of X if it satisfies:

(c81) $f_{\mathcal{C}}(0) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(0) \geq g_{\mathcal{C}}(x)$, (c82) $f_{\mathcal{C}}(x) \leq \bigvee \{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\}$ and $g_{\mathcal{C}}(x) \geq \bigwedge \{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\}$ for all $x, y \in X$. **Example 3.7.** (1) Let $X = \{0, a, b, c\}$ be a *d*-algebra ([2]), which is not a BCK/BCI-algebra, with the following Cayley table:

*	0	a	b	с
0	0	0	0	0
$a \\ b$	a	0	0	a
	b	b	0	a
c	c	c	c	0

Let $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -structure in X defined by

$$\mathcal{C} = \{ \langle 0; -0.8, -0.1 \rangle, \langle a; -0.4, -0.3 \rangle, \langle b; -0.4, -0.3 \rangle, \langle c; -0.3, -0.5 \rangle \}.$$

Then $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is both a coupled \mathcal{N} -subalgebra and a coupled \mathcal{N} -ideal of X. (2) Consider a *d*-algebra $X = \{0, a, b, c\}$ as in Example 2.3(c). Let $\mathcal{C} =$

 $(f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -structure in X defined by

$$\mathcal{C} = \{ \langle 0; -0.6, -0.3 \rangle, \langle a; -0.6, -0.3 \rangle, \langle b; -0.4, -0.5 \rangle, \langle c; -0.6, -0.3 \rangle \}$$

Then $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is a coupled \mathcal{N} -subalgebra of X, but not a coupled \mathcal{N} -ideal of X, since

$$f_{\mathcal{C}}(b) = -0.4 \nleq -0.6 = \bigvee \{ f_{\mathcal{C}}(b * c), f_{\mathcal{C}}(c) \}$$

and/or

$$g_{\mathcal{C}}(b) = -0.5 \ngeq -0.3 = \bigwedge \left\{ g_{\mathcal{C}}(b * c), g_{\mathcal{C}}(c) \right\}$$

Proposition 3.8. Every coupled N-ideal of a d-algebra X satisfies the following assertions:

- (i) $(\forall x, y, z \in X)(x * y \leq z \Rightarrow f_{\mathcal{C}}(x) \leq \bigvee \{f_{\mathcal{C}}(y), f_{\mathcal{C}}(z)\}, g_{\mathcal{C}}(x) \geq \bigwedge \{g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\}$).
- (ii) $(\forall x, y \in X)(x \le y \Rightarrow f_{\mathcal{C}}(x) \le f_{\mathcal{C}}(y), g_{\mathcal{C}}(x) \ge g_{\mathcal{C}}(y)).$

Proof. (i) Let $x, y, z \in X$ be such that $x * y \leq z$. Then (x * y) * z = 0, and so

$$\begin{aligned} f_{\mathcal{C}}(x) &\leq \bigvee \left\{ f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y) \right\} \\ &\leq \bigvee \left\{ \bigvee \left\{ f_{\mathcal{C}}((x * y) * z), f_{\mathcal{C}}(z) \right\}, f_{\mathcal{C}}(y) \right\} \\ &= \bigvee \left\{ \bigvee \left\{ f_{\mathcal{C}}(0), f_{\mathcal{C}}(z) \right\}, f_{\mathcal{C}}(y) \right\} \\ &= \bigvee \left\{ f_{\mathcal{C}}(y), f_{\mathcal{C}}(z) \right\} \end{aligned}$$

and

$$g_{\mathcal{C}}(x) \geq \bigwedge \{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\}$$

$$\geq \bigwedge \{\bigwedge \{g_{\mathcal{C}}((x * y) * z), g_{\mathcal{C}}(z)\}, g_{\mathcal{C}}(y)\}$$

$$= \bigwedge \{\bigwedge \{g_{\mathcal{C}}(0), g_{\mathcal{C}}(z)\}, g_{\mathcal{C}}(y)\}$$

$$= \bigwedge \{g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\}.$$

(ii) Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0, and so

$$f_{\mathcal{C}}(x) \leq \bigvee \{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\} \\ = \bigvee \{f_{\mathcal{C}}(0), f_{\mathcal{C}}(y)\} \\ = f_{\mathcal{C}}(y)$$

and

$$g_{\mathcal{C}}(x) \geq \bigwedge \{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\} \\ = \bigwedge \{g_{\mathcal{C}}(0), g_{\mathcal{C}}(y)\} \\ = g_{\mathcal{C}}(y).$$

This completes the proof.

Theorem 3.9. For a coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a d-algebra X, the following are equivalent:

- (1) $C = (f_C, g_C)$ is a coupled \mathcal{N} -ideal of X.
- (2) The nonempty $\mathcal{N}(t,s)$ -level set $\mathcal{N}\{(f_{\mathcal{C}},g_{\mathcal{C}});(t,s)\}$ is an ideal of X for all $t,s \in [-1,0]$ with $t+s \geq -1$.

Proof. (1) \Rightarrow (2). Obviously, $0 \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$. Let $x, y \in X$ be such that $x * y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$ and $y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$ for all $t, s \in [-1, 0]$ with $t + s \geq -1$. Then $f_{\mathcal{C}}(x * y) \leq t$, $g_{\mathcal{C}}(x * y) \geq s$, $f_{\mathcal{C}}(y) \leq t$, and $g_{\mathcal{C}}(y) \geq s$. Using (c82), we have $f_{\mathcal{C}}(x) \leq \bigvee \{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\} \leq t$ and $g_{\mathcal{C}}(x) \geq \bigwedge \{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\} \geq s$ which imply that $x \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$. Hence the nonempty $\mathcal{N}(t, s)$ -level set $\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$ is an ideal of X for all $t, s \in [-1, 0]$ with $t + s \geq -1$.

 $(2) \Rightarrow (1)$. Since $0 \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$, we have the condition (c81). Let $x, y \in X$ be such that $\mathcal{C}(x * y) = (t_x, s_x)$ and $\mathcal{C}(y) = (t_y, s_y)$, that is,

$$f_{\mathcal{C}}(x * y) = t_x, g_{\mathcal{C}}(x * y) = s_x, f_{\mathcal{C}}(y) = t_y, \text{ and } g_{\mathcal{C}}(y) = s_y.$$

Then $x * y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_x, s_x)\}$ and $y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_y, s_y)\}$. We may assume that $(t_x, s_x) \ll (t_y, s_y)$ without loss of generality. Then

 $\mathcal{N}\{(f_{\mathcal{C}},g_{\mathcal{C}});(t_x,s_x)\}\subseteq \mathcal{N}\{(f_{\mathcal{C}},g_{\mathcal{C}});(t_y,s_y)\},$

and so $x * y, y \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_y, s_y)\}$. Since $\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_y, s_y)\}$ is an ideal of X, it follows that $x \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_y, s_y)\}$ so that

$$f_{\mathcal{C}}(x) \le t_y = \bigvee \left\{ f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y) \right\} \text{ and } g_{\mathcal{C}}(x) \ge s_y = \bigwedge \left\{ g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y) \right\}.$$

Therefore $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in X is a coupled \mathcal{N} -ideal of X.

Definition 3.10. A coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a *d*-algebra X is called a *coupled positive implicative* \mathcal{N} -*ideal* of X if it satisfies (c81) and

(c83)
$$\begin{aligned} f_{\mathcal{C}}(x*z) &\leq \bigvee \left\{ f_{\mathcal{C}}((x*y)*z), f_{\mathcal{C}}(y*z) \right\} \text{ and} \\ g_{\mathcal{C}}(x*z) &\geq \bigwedge \left\{ g_{\mathcal{C}}((x*y)*z), g_{\mathcal{C}}(y*z) \right) \right\} \end{aligned}$$

715

for all $x, y \in X$.

Example 3.11. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a *d*-algebra ([1]), which is not a BCK/BCI-algebra, with the following Cayley table:

			-	-	-	
*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	2
2	2	2	0	0	2	1
3	3	3	3	0	0	1
4	4	4	4	4	0	1
5	$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$	5	5	5	5	0

Let $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -structure in X defined by

$$\mathcal{C} = \left\{ \langle 0; -0.8, -0.2 \rangle, \langle 1; -0.6, -0.3 \rangle, \langle 2; -0.6, -0.3 \rangle, \\ \langle 3; -0.6, -0.3 \rangle, \langle 4; -0.6, -0.3 \rangle, \langle 5; -0.3, -0.5 \rangle \right\}.$$

It is easy to check that $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is both a coupled \mathcal{N} -ideal of X and a coupled positive implicative \mathcal{N} -ideal of X.

Let $\mathcal{D} = (f_{\mathcal{D}}, g_{\mathcal{D}})$ be a coupled \mathcal{N} -structure in X defined by

$$\mathcal{D} = \left\{ \langle 0; -0.7, -0.2 \rangle, \langle 1; -0.5, -0.3 \rangle, \langle 2; -0.5, -0.3 \rangle, \\ \langle 3; -0.5, -0.3 \rangle, \langle 4; -0.5, -0.3 \rangle, \langle 5; -0.5, -0.3 \rangle \right\}.$$

It is easy to show that $\mathcal{D} = (f_{\mathcal{D}}, g_{\mathcal{D}})$ is both a coupled \mathcal{N} -subalgebra and a coupled \mathcal{N} -ideal of X, but not a coupled positive implicative \mathcal{N} -ideal of X, since

$$f_{\mathcal{D}}(2*4) = f_{\mathcal{D}}(2) = -0.5 \nleq -0.7 = \bigvee \{ f_{\mathcal{D}}((2*3)*4), f_{\mathcal{D}}(3*4) \}$$

and/or

$$g_{\mathcal{D}}(2*4) = g_{\mathcal{D}}(2) = -0.3 \ngeq -0.2 = \bigvee \{g_{\mathcal{D}}((2*3)*4), g_{\mathcal{D}}(3*4)\}.$$

Example 3.12. For a coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ in a *d*-algebra X, the following are equivalent:

- (1) $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is a coupled positive implicative \mathcal{N} -ideal of X.
- (2) The nonempty $\mathcal{N}(t, s)$ -level set $\mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$ is a positive implicative ideal of X for all $t, s \in [-1, 0]$ with $t + s \ge -1$.

Proof. Assume that $C = (f_C, g_C)$ is a coupled positive implicative \mathcal{N} -ideal of X. Let $t, s \in [-1, 0]$ be such that $t + s \geq -1$. Obviously, $0 \in \mathcal{N}\{(f_C, g_C); (t, s)\}$. Let $x, y, z \in X$ be such that $(x * y) * z, y * z \in \mathcal{N}\{(f_C, g_C); (t, s))\}$. Then $f_C((x * y) * z) \leq t, f_C(y * z) \leq t$ and $g_C((x * y) * z) \geq s, g_C(y * z) \geq s$. It follows from (c83) that $f_C(x * z) \leq \bigvee\{f_C((x * y) * z), f_C(y * z)\} \leq t$ and $g_C(x * z) \geq \bigwedge\{(f_C, g_C); (t, s)\}$. Hence the nonempty $\mathcal{N}(t, s)$ -level set of $C = (f_C, g_C)$ is a positive implicative ideal of X for all $t, s \in [-1, 0]$ with $t + s \geq -1$.

717

Conversely, suppose that the nonempty $\mathcal{N}(t,s)$ -level set of $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is a positive implicative ideal of X for all $t, s \in [-1, 0]$ with $t + s \ge -1$. Since $0 \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t, s)\}$, the condition (c81) is valid. Assume that there exist $a, b, c \in X$ such that $f_{\mathcal{C}}(a * c) > \bigvee \{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b * c)\}$ or $g_{\mathcal{C}}(a * c) < c$ $\bigwedge \{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b * c)\}.$ For the case $f_{\mathcal{C}}(a * c) > \bigvee \{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b * c)\}$ and $g_{\mathcal{C}}(a * c) \ge \bigwedge \{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b * c)\}$, there exist $s_0, t_0 \in [-1, 0)$ such that $f_{\mathcal{C}}(a*c) > t_0 > \bigvee \{f_{\mathcal{C}}((a*b)*c), f_{\mathcal{C}}(b*c)\} \text{ and } s_0 = \bigwedge \{g_{\mathcal{C}}((a*b)*c), g_{\mathcal{C}}(b*c)\}.$ It follows that $(a*b)*c, b*c \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0)\}$, but $a*c \notin \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0)\}$. This is impossible. For the case $f_{\mathcal{C}}(a * c) \leq \bigvee \{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b * c)\}$ and $g_{\mathcal{C}}(a * c) < \bigwedge \{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b * c)\}, \text{ there exist } s_0, t_0 \in [-1, 0) \text{ such that}$ $t_0 = \bigvee \{ f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b * c) \} \text{ and } g_{\mathcal{C}}(a * c) < s_0 < \bigwedge \{ g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b * c) \}.$ Then $(a * b) * c, b * c \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0)\}$, but $a * c \notin \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0)\}$. This is a contradiction. If $f_{\mathcal{C}}(a * c) > \bigvee \{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b * c)\}$ and $g_{\mathcal{C}}(a * c) < c$ $\bigwedge \{ g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b * c) \}, \text{ then } (a * b) * c, b * c \in \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0) \}, \text{ but}$ $a * c \notin \mathcal{N}\{(f_{\mathcal{C}}, g_{\mathcal{C}}); (t_0, s_0)\}, \text{ where } t_0 := \frac{1}{2}(f_{\mathcal{C}}(a * c) + \bigvee\{f_{\mathcal{C}}((a * b) * c), f_{\mathcal{C}}(b * c)\})$ and $s_0 := \frac{1}{2}(g_{\mathcal{C}}(a * c) + \bigwedge \{g_{\mathcal{C}}((a * b) * c), g_{\mathcal{C}}(b * c)\})$. This is a contradiction. Therefore $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is a coupled positive implicative \mathcal{N} -ideal of X. \square

Proposition 3.13. For any d^* -algebra X, every coupled \mathcal{N} -ideal is a coupled \mathcal{N} -subalgebra of X.

Proof. Let a coupled \mathcal{N} -structure $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -ideal of a d^* -algebra X and let $x, y \in X$. Then

$$f_{\mathcal{C}}(x*y) \leq \bigvee \{f_{\mathcal{C}}((x*y)*x), f_{\mathcal{C}}(x)\} = \bigvee \{f_{\mathcal{C}}(0), f_{\mathcal{C}}(x)\} \leq \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\}$$

and

$$g_{\mathcal{C}}(x * y) \ge \bigwedge \{g_{\mathcal{C}}((x * y) * x), g_{\mathcal{C}}(x)\} = \bigwedge \{g_{\mathcal{C}}(0), g_{\mathcal{C}}(x)\} \ge \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\}.$$

Hence $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is a coupled \mathcal{N} -subalgebra of X .

The converse of Theorem 3.13 may not be true in general as seen in the following example.

Example 3.14. Let $X = \{0, a, b, c\}$ be a d^* -algebra ([1]), which is not a BCK/BCI-algebra, with the following Cayley table:

*	0	a	b	c
0	0	0	0	0
$a \\ b$	a	0	0	0
b	b	b	0	0
c	c	c	a	0

Let $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ be a coupled \mathcal{N} -structure in X defined by

$$\mathcal{C} = \{ \langle 0; -0.7, -0.2 \rangle, \langle a; -0.5, -0.4 \rangle, \langle b; -0.5, -0.4 \rangle, \langle c; -0.2, -0.6 \rangle \}.$$

It is easily verified that $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ is a coupled \mathcal{N} -subalgebra, but not a coupled \mathcal{N} -ideal of X, since

$$f_{\mathcal{C}}(c) = -0.2 \nleq -0.5 = \bigvee \{ f_{\mathcal{C}}(c * b), f_{\mathcal{C}}(b) \}$$

and/or

$$g_{\mathcal{C}}(c) = -0.6 \ngeq -0.4 = \bigvee \{g_{\mathcal{C}}(c * b), g_{\mathcal{C}}(b)\}.$$

Proposition 3.15. Every coupled positive implicative \mathcal{N} -ideal $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ of an edge d-algebra X is a coupled \mathcal{N} -ideal of X.

Proof. Put z := 0 in (c83).

Proposition 3.16. Let $C = (f_C, g_C)$ be a coupled positive implicative N-ideal of an edge d-algebra X.

- (i) If $x \leq y$ for any $x, y \in X$, then $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(y)$, $g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(y)$. (ii) If $f_{\mathcal{C}}(x * y) = f_{\mathcal{C}}(0)$ for any $x, y \in X$, then $f_{\mathcal{C}}(x) \leq f_{\mathcal{C}}(y)$. (iii) If $g_{\mathcal{C}}(x * y) = g_{\mathcal{C}}(0)$ for any $x, y \in X$, then $g_{\mathcal{C}}(x) \geq g_{\mathcal{C}}(y)$.

Proof. (i) Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0. Hence

$$\begin{aligned} f_{\mathcal{C}}(x) &= f_{\mathcal{C}}(x*0) \leq \bigvee \{ f_{\mathcal{C}}((x*y)*0), f_{\mathcal{C}}(y*0) \} \\ &= \bigvee \{ f_{\mathcal{C}}(x*y), f_{\mathcal{C}}(y) \} \\ &= \bigvee \{ f_{\mathcal{C}}(0), f_{\mathcal{C}}(y) \} = f_{\mathcal{C}}(y) \end{aligned}$$

and

$$g_{\mathcal{C}}(x) = g_{\mathcal{C}}(x * 0) \ge \bigwedge \{ g_{\mathcal{C}}((x * y) * 0), g_{\mathcal{C}}(y * 0) \}$$

= $\bigwedge \{ g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y) \}$
= $\bigwedge \{ g_{\mathcal{C}}(0), g_{\mathcal{C}}(y) \} = g_{\mathcal{C}}(y).$

(ii) For any
$$x, y \in X$$
, we have

$$f_{\mathcal{C}}(x) = f_{\mathcal{C}}(x * 0) \leq \bigvee \{ f_{\mathcal{C}}((x * y) * 0), f_{\mathcal{C}}(y * 0) \}$$

= $\bigvee \{ f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y) \}$
= $\bigvee \{ f_{\mathcal{C}}(0), f_{\mathcal{C}}(y) \}$
= $f_{\mathcal{C}}(y).$

(iii) For any $x, y \in X$, we have

$$g_{\mathcal{C}}(x) = g_{\mathcal{C}}(x * 0) \ge \bigwedge \{g_{\mathcal{C}}((x * y) * 0), g_{\mathcal{C}}(y * 0)\}$$

= $\bigwedge \{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\}$
= $\bigwedge \{g_{\mathcal{C}}(0), g_{\mathcal{C}}(y)\}$
= $g_{\mathcal{C}}(y).$

719

Proposition 3.17. Let $C = (f_C, g_C)$ be a coupled positive implicative N-ideal of an edge d^* -algebra X. Then the following hold:

- (i) $(\forall x, y \in X)(f_{\mathcal{C}}(x * y) \le f_{\mathcal{C}}(x), g_{\mathcal{C}}(x * y) \ge g_{\mathcal{C}}(x)).$
- (ii) $(\forall x, y \in X)(f_{\mathcal{C}}(x * y) \leq \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y)\}, g_{\mathcal{C}}(x * y) \geq \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y)\}).$
- (iii) $(\forall x, y, z \in X)(f_{\mathcal{C}}(x * (y * z)) \leq \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y), f_{\mathcal{C}}(z)\}, g_{\mathcal{C}}(x * (y * z)) \geq \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\}).$

Proof. (i) Since X is a d^* -algebra, we have (x*y)*x = 0 for any $x, y \in X$. Hence $x*y \leq x$ for any $x, y \in X$. Using Proposition 3.8(ii), we have $f_{\mathcal{C}}(x*y) \leq f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(x*y) \geq g_{\mathcal{C}}(x)$ for any $x, y \in X$.

(ii) It is easily verified from Theorem 3.13 and Proposition 3.15.

(iii) For any $x, y, z \in X$, we have

$$\begin{aligned} f_{\mathcal{C}}(x*(y*z)) &\leq \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y*z)\} \\ &\leq \bigvee \{f_{\mathcal{C}}(x), f_{\mathcal{C}}(y), f_{\mathcal{C}}(z)\} \end{aligned}$$

and

$$g_{\mathcal{C}}(x * (y * z)) \ge \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y * z)\}$$
$$\ge \bigwedge \{g_{\mathcal{C}}(x), g_{\mathcal{C}}(y), g_{\mathcal{C}}(z)\}.$$

For any element a of a d-algebra X, let

$$X_a := \left\{ x \in X \mid f_{\mathcal{C}}(x) \le f_{\mathcal{C}}(a), \ g_{\mathcal{C}}(x) \ge g_{\mathcal{C}}(a) \right\}.$$

Obviously, X_a is a non-empty subset of X.

Proposition 3.18. Let a be any element of a d-algebra X. If $C = (f_C, g_C)$ is a coupled (positive implicative) \mathcal{N} -ideal of X, then the set X_a is a (positive implicative) ideal of X.

Proof. Obviously, $0 \in X_a$. Let $x, y \in X$ be such that $x * y \in X_a$ and $y \in X_a$. Then $f_{\mathcal{C}}(x * y) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}(x * y) \geq g_{\mathcal{C}}(a), f_{\mathcal{C}}(y) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(y) \geq g_{\mathcal{C}}(a)$. It follows from (c82) that $f_{\mathcal{C}}(x) \leq \bigvee \{f_{\mathcal{C}}(x * y), f_{\mathcal{C}}(y)\} \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x) \geq \bigwedge \{g_{\mathcal{C}}(x * y), g_{\mathcal{C}}(y)\} \geq g_{\mathcal{C}}(a)$ so that $x \in X_a$. Therefore X_a is an ideal of X.

Let $x, y, z \in X$ be such that $(x * y) * z \in X_a$ and $y * z \in X_a$. Then $f_{\mathcal{C}}((x * y) * z) \leq f_{\mathcal{C}}(a), g_{\mathcal{C}}((x * y) * z) \geq g_{\mathcal{C}}(a), f_{\mathcal{C}}(y * z) \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(y * z) \geq g_{\mathcal{C}}(a)$. It follows from (c83) that $f_{\mathcal{C}}(x * z) \leq \bigvee \{f_{\mathcal{C}}((x * y) * z), f_{\mathcal{C}}(y * z)\} \leq f_{\mathcal{C}}(a)$ and $g_{\mathcal{C}}(x * z) \geq \bigwedge \{g_{\mathcal{C}}((x * y) * z), g_{\mathcal{C}}(y * z)\} \geq g_{\mathcal{C}}(a)$ so that $x * z \in X_a$. Therefore X_a is a positive implicative ideal of X.

Proposition 3.19. Let a be any element of a d-algebra X and let $C = (f_C, g_C)$ be a coupled N-structure in X. Then

(i) if X_a is an ideal of X, then $\mathcal{C} = (f_{\mathcal{C}}, g_{\mathcal{C}})$ satisfies the following assertion:

$$(3.2) \quad (\forall x, y, z \in X) \quad \left(\begin{array}{c} f_{\mathcal{C}}(x) \ge \bigvee \left\{ f_{\mathcal{C}}(y * z), f_{\mathcal{C}}(z) \right\} \Rightarrow f_{\mathcal{C}}(x) \ge f_{\mathcal{C}}(y) \\ g_{\mathcal{C}}(x) \le \bigwedge \left\{ g_{\mathcal{C}}(y * z), g_{\mathcal{C}}(z) \right\} \Rightarrow g_{\mathcal{C}}(x) \le g_{\mathcal{C}}(y) \end{array} \right).$$

(ii) if
$$C = (f_C, g_C)$$
 satisfies (3.2) and
(3.3) $(\forall x \in X) (f_C(0) \le f_C(x), g_C(0) \ge g_C(x))$
then X_a is an ideal of X .

Proof. (i) Assume that X_a is an ideal of X for all $a \in X$. Let $x, y, z \in X$ be such that $f_{\mathcal{C}}(x) \ge \bigvee \{f_{\mathcal{C}}(y * z), f_{\mathcal{C}}(z)\}$ and $g_{\mathcal{C}}(x) \le \bigwedge \{g_{\mathcal{C}}(y * z), g_{\mathcal{C}}(z)\}$. Then $y * z \in X_x$ and $z \in X_x$. Since X_x is an ideal of X, it follows that $y \in X_x$ so that $f_{\mathcal{C}}(y) \le f_{\mathcal{C}}(x)$ and $g_{\mathcal{C}}(y) \ge g_{\mathcal{C}}(x)$.

(ii) Suppose that $C = (f_C, g_C)$ satisfies two conditions (3.2) and (3.3). Let $x, y \in X$ be such that $x * y \in X_a$ and $y \in X_a$. Then $f_C(x * y) \leq f_C(a), g_C(x * y) \geq g_C(a), f_C(y) \leq f_C(a)$ and $g_C(y) \geq g_C(a)$. Hence $f_C(a) \geq \bigvee \{f_C(x * y), f_C(y)\}$ and $g_C(a) \leq \bigwedge \{g_C(x * y), g_C(y)\}$, which imply from (3.2) that $f_C(a) \geq f_C(x)$ and $g_C(a) \leq g_C(x)$. Thus $x \in X_a$. Obviously, $0 \in X_a$. Therefore X_a is an ideal of X.

References

- S. S. Ahn and G. H. Han, Ideal theory of d-algebras based on N-structures, J. Appl. Math. Inform. 29 (2011), no. 5-6, 1489–1500.
- [2] S. S. Ahn and K. S. So, On kernels and annihilators of left-regular mappings in dalgebras, Honam Math. J. 30 (2008), no. 4, 645–658.
- [3] P. J. Allen, H. S. Kim, and J. Neggers, *L-up and mirror algebras*, Sci. Math. Jpn. 59 (2004), no. 3, 605–612.
- [4] _____, Companion d-algebras, Math. Slovaca 57 (2007), no. 2, 93–106.
- [5] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, part 2, 313–320.
- [6] _____, On proper BCH-algebras, Math. Japon. 30 (1985), no. 4, 659–661.
- [7] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.
- [8] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), no. 1, 1–26.
- [9] Y. B. Jun, S. S. Ahn, and D. R. Prince Williams, Coupled N-structures and its application in BCK/BCI-algebras, Iranian J. Sci. Tech. 37 (2013), no. 2, 133–140.
- [10] Y. B. Jun, J. Neggers, and H. S. Kim, Fuzzy d-ideals of d-algebras, J. Fuzzy Math. 8 (2000), no. 1, 123–130.
- [11] Y. C. Lee and H. S. Kim, On d-subalgebras of d-transitive d*-algebras, Math. Slovaca 49 (1999), no. 1, 27–33.
- [12] J. Neggers, A. Dvurecenskij, and H. S. Kim, On d-fuzzy functions in d-algebras, Found. Phys. 30 (2000), no. 10, 1807–1816.
- [13] J. Neggers, Y. B. Jun, and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (1999), no. 3, 243–251.
- [14] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), no. 1, 19-26.

SUN SHIN AHN DEPARTMENT OF MATHEMATICS EDUCATION DONGGUK UNIVERSITY SEOUL 100-715, KOREA *E-mail address*: sunshine@donggguk.edu

Jung Mi Ko Department of Mathematics Gangneung-Wonju National University Gangneung 210-702, Korea *E-mail address*: jmko@gwnu.ac.kr