• Title/Summary/Keyword: coupled mechanics

Search Result 780, Processing Time 0.025 seconds

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.

Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles

  • Soomro, Mukhtiar Ali;Mangi, Naeem;Memon, Aftab Hameed;Mangnejo, Dildar Ali
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.25-40
    • /
    • 2022
  • In this study, 3D coupled-consolidation numerical parametric study was conducted to predict the deformation mechanism of a 20 storey building sitting on (4×4) piled raft (with length of piles, Lp=30 m) to adjacent 6 m diameter (D) tunnelling in stiff clay. The influences of different tunnel locations relative to piles (i.e., zt/Lp) were investigated in this parametric study. In first case, the tunnel was excavated near the pile shafts with depth of tunnel axis (zt) of 9 m (i.e., zt/Lp). In second and third cases, tunnels were driven at zt of 30 m and 42 m (i.e., zt/Lp = 1.0 and 1.4), respectively. An advanced hypoplastic clay model (which is capable of taking small-strain stiffness in account) was adopted to capture soil behaviour. The computed results revealed that tunnelling activity adjacent to a building resting on piled raft caused significant settlement, differential settlement, lateral deflection, angular distortion in the building. In addition, substantial bending moment, shear forces and changes in axial load distribution along pile length were induced. The findings from the parametric study revealed that the building and pile responses significantly influenced by tunnel location relative to pile.

Parametric study of the wave dispersion in the hydro-elastic system consisting of an inhomogeneously prestressed hollow cylinder containing compressible inviscid fluid

  • Surkay D. Akbarov;Gurbaneli J. Veliyev
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.41-68
    • /
    • 2023
  • The present work is concerned with the study of the influence of inhomogeneous initial stresses in a hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes.

Development of flood hazard and risk maps in Bosnia and Herzegovina, key study of the Zujevina River

  • Emina, Hadzic;Giuseppe Tito, Aronica;Hata, Milisic;Suvada, Suvalija;Slobodanka, Kljucanin;Ammar, Saric;Suada, Sulejmanovic;Fehad, Mujic
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.505-524
    • /
    • 2022
  • Floods represent extreme hydrological phenomena that affect populations, environment, social, political, and ecological systems. After the catastrophic floods that have hit Europe and the World in recent decades, the flood problem has become more current. At the EU level, a legal framework has been put in place with the entry into force of Directive 2007/60/EC on Flood Risk Assessment and Management (Flood Directive). Two years after the entry into force of the Floods Directive, Bosnia and Herzegovina (B&H), has adopted a Regulation on the types and content of water protection plans, which takes key steps and activities under the Floods Directive. The "Methodology for developing flood hazard and risk maps" (Methodology) was developed for the territory of Bosnia and Herzegovina, following the methodology used in the majority of EU member states, but with certain modifications to the country's characteristics. Accordingly, activities for the preparation of the Preliminary Flood Risk Assessment for each river basin district were completed in 2015 for the territory of Bosnia and Herzegovina. Activities on the production of hazard maps and flood risk maps are in progress. The results of probable climate change impact model forecasts should be included in the preparation of the Flood Risk Management Plans, which is the subsequent phase of implementing the Flood Directive. By the foregoing, the paper will give an example of the development of the hydrodynamic model of the Zujevina River, as well as the development of hazard and risk maps. Hazard and risk maps have been prepared for medium probability floods of 1/100 as well as for high probability floods of 1/20. The results of LiDAR (Light Detection and Ranging) recording were used to create a digital terrain model (DMR). It was noticed that there are big differences between the flood maps obtained by recording LiDAR techniques in relation to the previous flood maps obtained using georeferenced topographic maps. Particular attention is given to explaining the Methodology applied in Bosnia and Herzegovina.

A semi-analytical and numerical approach for solving 3D nonlinear cylindrical shell systems

  • Liming Dai;Kamran Foroutan
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.461-473
    • /
    • 2023
  • This study aims to solve for nonlinear cylindrical shell systems with a semi-analytical and numerical approach implementing the P-T method. The procedures and conditions for such a study are presented in practically solving and analyzing the cylindrical shell systems. An analytical model for a nonlinear thick cylindrical shell (TCS) is established on the basis of the stress function and Reddy's higher-order shear deformation theory (HSDT). According to Reddy's HSDT, Hooke's law in three dimensions, and the von-Kármán equation, the stress-strain relations are developed for the thick cylindrical shell systems, and the three coupled nonlinear governing equations are thus established and discretized as per the Galerkin method, for implementing the P-T method. The solution generated with the approach is continuous everywhere in the entire time domain considered. The approach proposed can also be used to numerically solve and analyze the nonlinear shell systems. The procedures and recurrence relations for numerical solutions of shell systems are presented. To demonstrate the application of the approach in numerically solving for nonlinear cylindrical shell systems, a specific nonlinear cylindrical shell system subjected to an external excitation is solved numerically. In numerically solving for the system, the present approach shows higher efficiency, accuracy, and reliability in comparison with that of the Runge-Kutta method. The approach with the P-T method presented is practically sound especially when continuous and high-quality numerical solutions for the shell systems are considered.

Numerical formulation of a new solid-layer finite element to simulate reinforced concrete structures strengthened by over-coating

  • Suarez-Suarez, Arturo;Dominguez-Ramírez, Norberto;Susarrey-Huerta, Orlando
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.439-458
    • /
    • 2022
  • Over-coating is one of the most popular engineering practices to strengthen Reinforced Concrete (RC) structures, due to the relative quickness and ease of construction. It consists of an external coat bonded to the outer surface of the structural RC element, either by the use of chemical adhesives, mechanical anchor bolts or simply mortar injection. In contrast to these constructive advantages, the numerical estimation of the bearing capacity of the strengthened reinforced concrete element is still complicated, not only for the complexity of modelling a flexible membrane or plate attached to a quasi-rigid solid, but also for the difficulties that raise of simulating any potential delamination between both materials. For these reasons, the standard engineering calculations used in the practice remain very approximated and clumsy. In this work, we propose the formulation of a new 2D solid-layer finite element capable to link a solid body with a flexible thin layer, as it were the "skin" of the body, allowing the potential delamination between both materials. In numerical terms, this "skin" element is intended to work as a transitional region between a solid body (modelled with a classical formulation of a standard quadrilateral four-nodes element) and a flexible coat layer (modelled with cubic beam element), dealing with the incompatibility of Degrees-Of-Freedom between them (two DOF for the solid and three DOF for the beam). The aim of the solid-layer element is to simplify the mesh construction of the strengthened RC element being aware of two aspects: a) to prevent the inappropriate use of very small solid elements to simulate the coat; b) to improve the numerical estimation of the real bearing capacity of the strengthened element when the coat is attached or detached from the solid body.

Evaluation of optimal ground motion intensity measures of high-speed railway train running safety on bridges during earthquakes

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Feng, Yulin;Lai, Zhipeng;Sun, Xiaoyun
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • Due to the large number of railway bridges along China's high-speed railway (HSR) lines, which cover a wide area with many lines crossing the seismic zone, the possibility of a HSR train running over a bridge when an earthquake occurs is relatively high. Since the safety performance of the train will be threatened, it is necessary to study the safety of trains running over HSR bridges during earthquakes. However, ground motion (GM) is highly random and selecting the appropriate ground-motion intensity measures (IMs) for train running safety analysis is not trivial. To deal this problem, a model of a coupled train-bridge system under seismic excitation was established and 104 GM samples were selected to evaluate the correlation between 16 different IMs and train running safety over HSR bridges during earthquakes. The results show that spectral velocity (SvT1) and displacement (SdT1) at the fundamental period of the structure have good correlation with train running safety for medium-and long-period HSR bridges, and velocity spectrum intensity (VSI) and Housner intensity (HI) have good correlation for a wide range of structural periods. Overall, VSI and HI are the optimal IMs for safety analysis of trains running over HSR bridges during earthquakes. Finally, based on VSI and HI, the IM thresholds of an HSR bridge at different speed were analyzed.

Negative Turbulent Magnetic 𝛽 Diffusivity effect in a Magnetically Forced System

  • Park, Kiwan;Cheoun, Myung-Ki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.47.3-48
    • /
    • 2021
  • We studied the large scale dynamo process in a system forced by helical magnetic field. The dynamo process is basically nonlinear, but can be linearized with 𝛼&𝛽 coefficients and large scale magnetic field $\bar{B}$. This is very useful to the investigation of solar (stellar) dynamo. A coupled semi-analytic equations based on statistical mechanics are used to investigate the exact evolution of 𝛼&𝛽. This equation set needs only magnetic helicity ${\bar{H}}_M({\equiv}{\langle}{\bar{A}}{\cdot}{\bar{B}}{\rangle},\;{\bar{B}}={\nabla}{\times}{\bar{A}})$ and magnetic energy ${\bar{E}}_M({\equiv}{\langle}{\bar{B}}^2{\rangle}/2)$. They are fundamental physics quantities that can be obtained from the dynamo simulation or observation without any artificial modification or assumption. 𝛼 effect is thought to be related to magnetic field amplification. However, in reality the averaged 𝛼 effect decreases very quickly without a significant contribution to ${\bar{B}}$ field amplification. Conversely, 𝛽 effect contributing to the magnetic diffusion maintains a negative value, which plays a key role in the amplification with Laplacian ∇2(= - k2) for the large scale regime. In addition, negative magnetic diffusion accounts for the attenuation of plasma kinetic energy EV(= 〈 U2 〉/2) (U: plasma velocity) when the system is saturated. The negative magnetic diffusion is from the interaction of advective term - U • ∇ B from magnetic induction equation and the helical velocity field. In more detail, when 'U' is divided into the poloidal component Upol and toroidal one Utor in the absence of reflection symmetry, they interact with - B • ∇ U and - U • ∇ B from ∇ × 〈 U × B 〉 leading to 𝛼 effect and (negative) 𝛽 effect, respectively. We discussed this process using the theoretical method and intuitive field structure model supported by the simulation result.

  • PDF

On the effect of porosity on the shear correction factors of functionally graded porous beams

  • Ben Abdallah Medjdoubi;Mohammed Sid Ahmed Houari;Mohamed Sadoun;Aicha Bessaim;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelhak Khechai;Aman Garg;Mofareh Hassan Ghazwani
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.199-220
    • /
    • 2023
  • This article presents a new analytical model to study the effect of porosity on the shear correction factors (SCFs) of functionally graded porous beams (FGPB). For this analysis, uneven and logarithmic-uneven porosity functions are adopted to be distributed through the thickness of the FGP beams. Critical to the application of this theory is a determination of the correction factor, which appears as a coefficient in the expression for the transverse shear stress resultant; to compensate for the assumption that the shear strain is uniform through the depth of the cross-section. Using the energy equivalence principle, a general expression is derived from the static SCFs in FGPB. The resulting expression is consistent with the variationally derived results of Reissner's analysis when the latter are reduced from the two-dimensional case (plate) to the one-dimensional one (beam). A convenient algebraic form of the solution is presented and new study cases are given to illustrate the applicability of the present formulation. Numerical results are presented to illustrate the effect of the porosity distribution on the (SCFs) for various FGPBs. Further, the law of changing the mechanical properties of FG beams without porosity and the SCFare numerically validated by comparison with some available results.

A passive vibration isolator with bio-inspired structure and inerter nonlinear effects

  • Jing Bian;Xu-hong Zhou;Ke Ke;Michael CH Yam;Yu-hang Wang;Yue Qiu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.221-238
    • /
    • 2023
  • This paper developed and examined a novel passive vibration isolator (i.e., "X-inerter") motivated by combining a bio-inspired structure and a rack-pinion inerter. The bio-inspired structure provided nonlinear stiffness and damping owing to its geometric nonlinearity. In addition, the behavior was further enhanced by a gear inerter that produced a special nonlinear inertia effect; thus, an X-inerter was developed. As a result, the X-inerter can achieve both high-static-low-dynamic stiffness (HSLDS) and quasi-zero stiffness (QZS), obtaining ultra-low frequency isolation. Furthermore, the installed inerter can produce a coupled nonlinear inertia and damping effect, leading to an anti-resonance frequency near the resonance, wide isolation region, and low resonance peak. Both static and dynamic analyses of the proposed isolator were conducted and the structural parameters' influence was comprehensively investigated. The X-inerter was proven to be comparatively more stable in the ultra-low frequency than the benchmarking QZS isolator due to the nonlinear damping and inertia properties. Moreover, the inertia effect could suppress the bio-inspired structure's super- and sub-harmonic resonance. Therefore, the X-inerter isolator generally possesses desirable nonlinear stiffness, nonlinear damping, and unique nonlinear inertia, designed to achieve the ultra-low natural frequency, the anti-resonance property, and a wide isolation region with a low resonance peak.