• Title/Summary/Keyword: coupled error

Search Result 312, Processing Time 0.026 seconds

Error-Correcting 7/9 Modulation Codes For Holographic Data Storage

  • Lee, Kyoungoh;Kim, Byungsun;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.86-91
    • /
    • 2014
  • Holographic data storage (HDS) has a number of advantages, including a high transmission rate through the use of a charge coupled device array for reading two-dimensional (2D) pixel image data, and a high density capacity. HDS also has disadvantages, including 2d intersymbol interference by neighboring pixels and interpage interference by multiple pages stored in the same holographic volume. These problems can be eliminated by modulation codes. We propose a 7/9 error-correcting modulation code that exploits a Viterbi-trellis algorithm and has a code rate larger (about 0.778) than that of the conventional 6/8 balanced modulation code. We show improved performance of the bit error rate with the proposed scheme compared to that of the simple 7/9 code without the trellis scheme and the 6/8 balanced modulation code.

Development of WNS/GPS System Using Tightly Coupled Method

  • Yun, Cho-Seong;Park, Chan-Gook;Jee, Gyu-In;Lee, Young-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.114.5-114
    • /
    • 2001
  • In this paper, the model for personal navigation system using low-cost inertial sensors and error compensation method with GPS are proposed. Simulation is accomplished for the performance test. WNS(Walking Navigation System) is a kind of personal navigation using the number of a walk, stride and azimuth. Because the accuracy of these variables determines the navigational performance, computational methods have been investigated. The step is detected using the motion pattern by walking motion, stride is determined by neural network and azimuth is calculated with gyro´s output. The neural network filters off unnecessary motions. However, error compensation method is needed, because the error of navigation information increases with time ...

  • PDF

Discriminative Training of Predictive Neural Network Models (예측신경회로망 모델의 변별력 있는 학습)

  • Na, Kyung-Min;Rheem, Jae-Yeol;Ann, Sou-Guil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.64-70
    • /
    • 1994
  • Predictive neural network models are powerful speech recognition models based on a nonlinear pattern prediction. But those models suffer from poor discrimination between acoustically similar words. In this paper we propose an discriminative training algorithm for predictive neural network models. This algorithm is derived from GPD (Generalized Probabilistic Descent) algorithm coupled with MCEF(Minimum Classification Error Formulation). It allows direct minimization of a recognition error rate. Evaluation of our training algoritym on ten Korean digits shows its effectiveness by 30% reduction of recognition error.

  • PDF

Effect of Basis Set Superposition Error on the MP2 Relative Energies of Gold Cluster Au6

  • Kim, Kyoung-Hoon;Kim, Jong-Chan;Han, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.794-796
    • /
    • 2009
  • We have studied the structures and stabilities of Au6 to explore the origin of the large discrepancy between relative energies obtained from the density functional theory (DFT) and ab initio correlated levels of theory. The MP2 methods significantly overestimate the stability of the non-planar isomer when the double-$\zeta$ polarization quality of basis sets, such as LANL2DZ+1f and CEP31G+1f, are used. However, we show that such preference for the non-planar structure at the MP2 level mainly originates from the large basis set superposition error.

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.24-36
    • /
    • 2011
  • A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulation employs measurements obtained from a vision sensor to provide multiple line(-) of(-) sight vectors from the spacecraft to another spacecraft. The line-of-sight measurements are coupled with gyro measurements and dynamic models in an UKF to determine relative attitude, position and gyro biases. A vector of generalized Rodrigues parameters is used to represent the local error-quaternion between two spacecraft. A multiplicative quaternion-error approach is derived from the local error-quaternion, which guarantees the maintenance of quaternion unit constraint in the filter. The scenario for bounded relative motion is selected to verify this extended application of the UKF. Simulation results show that the UKF is more robust than the EKF under realistic initial attitude and navigation error conditions.

Correction of Mean Phase Error for OFDM and SC-CP Systems using Decision-Directed Method (OFDM 및 SC-CP 시스템에 대한 결정지향 방식의 평균위상에러 정정)

  • Kim Ji-Heon;Kim Whan-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.77-84
    • /
    • 2005
  • The orthogonal frequency division multiplexing (OFDM) technique and the single carrier with cyclic prefix (SC-CP) scheme are very attractive solutions for wireless applications, being computationally efficient since equalization is performed in the frequency domain. The equalizer could not entirely handle significant mean. Doppler shift. This motivates the use of a phase error tracking loop that operates jointly with the frequency equalizer. This paper describes the effect of the mean phase error and the performance of the proportional equalizer coupled with a phase error tracking loop based on decision-directed method. Furthermore, simulation results show that we can reduce the computational toad of the tracking loop with minimal performance degradation.

Design Method of the Meander-Coupled Wilkinson Power Divider for L-band (미앤더(Meander) 결합 형태의 Wilkinson 전력 분배기 설계 방법)

  • 이영순;이창언;김선효;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.676-685
    • /
    • 2001
  • In this paper, the design method of the meander-coupled Wilkinson power divider with slit is proposed. Because the electrical performance of this structure is varied with each coupling distance and the slit's size, a tedious design work, which is done by trial and error correction, is required to determine the values of parameters for the best suitable operation. To solve this problems, therefore, an experimental design formulas for optimum performance are presented by curve fitting, under the desired center frequency($f_0$). As the example using the proposed design equation, we designed and fabricated the meander-coupled divider at $f_0$=1.5 GHz. It has better electrical performance and measured results also agrees very well that of the simulated. From these observation, it can be concluded that the obtained design formulas are useful for design of this divider.

  • PDF

RVEGA SMC for Precise Level Control of Coupled Tank System (이중 탱크 시스템의 정밀 수위 제어를 위한 RVEGA SMC에 관한 연구)

  • 김태우;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.102-108
    • /
    • 1999
  • The sliding rmde controller(SMC) is known as having the robust variable structures for the nonlinear control systems such as coupled tank system with the pararretric perturbations and with the rapid disturbances. But the adaptive tuning algorit1uns for their pararreters are not satisfactory. Therefore, in this paper, a Real Variable Elitist Genetic Algorithm based Sliding Mode Controller (RVEGA SMC) for the precise control of the coupled tank level was tried. The SMC's switching pararreters were optimized easily and rapidly by RVEGA The simulation results showed that the tank level could be satisfactorily controlled without any overshoot and any steady-state error by the proposed RVEGA SMC.GA SMC.

  • PDF

Nuclear UPF1 Is Associated with Chromatin for Transcription-Coupled RNA Surveillance

  • Hong, Dawon;Park, Taeyoung;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.523-529
    • /
    • 2019
  • mRNA quality is controlled by multiple RNA surveillance machineries to reduce errors during gene expression processes in eukaryotic cells. Nonsense-mediated mRNA decay (NMD) is a well-characterized mechanism that degrades error-containing transcripts during translation. The ATP-dependent RNA helicase up-frameshift 1 (UPF1) is a key player in NMD that is mostly prevalent in the cytoplasm. However, recent studies on UPF1-RNA interaction suggest more comprehensive roles of UPF1 on diverse forms of target transcripts. Here we used subcellular fractionation and immunofluorescence to understand such complex functions of UPF1. We demonstrated that UPF1 can be localized to the nucleus and predominantly associated with the chromatin. Moreover, we showed that UPF1 associates more strongly with the chromatin when the transcription elongation and translation inhibitors were used. These findings suggest a novel role of UPF1 in transcription elongation-coupled RNA machinery in the chromatin, as well as in translation-coupled NMD in the cytoplasm. Thus, we propose that cytoplasmic UPF1-centric RNA surveillance mechanism could be extended further up to the chromatin-associated UPF1 and co-transcriptional RNA surveillance. Our findings could provide the mechanistic insights on extensive regulatory roles of UPF1 for many cellular RNAs.

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF