• Title/Summary/Keyword: coupled displacement

Search Result 437, Processing Time 0.021 seconds

Examination of Applicability of Liquefaction Potential Index to Seismic Vulnerability Evaluation of the Korean River Levees (액상화 가능 지수의 국내 하천제방 지진취약도 평가 적용성 검토)

  • Ha, Iksoo;Moon, Injong;Yun, Jungwon;Han, Jintae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.4
    • /
    • pp.31-40
    • /
    • 2017
  • In this study, a simple method to evaluate the seismic vulnerability of river levees was examined considering the structural characteristic of river levee, that is long, and the functional characteristic of river levee that performs temporary function against flood but is a permanent structure in the ordinary way. Considering the fact that one of the main failure modes of the levee during the earthquake are the settlement due to the strength reduction of the ground caused by the increase of the excess pore pressure in the levee body and foundation and the settlement due to liquefaction, the 2-dimensional section of the levee was regarded as the 1-dimensional section and the liquefaction potential index (LPI) for the regarded section was estimated. The estimated LPI was correlated with the seismic vulnerability of river levees. The relationship between the displacement of the levee crest caused by the earthquake and the seismic vulnerability of the levees was obtained from the results of previous researches and the correlation between the displacements of the levee crest computed by 2-dimensional dynamic coupled analyses and LPIs based on the results of 1-dimensional seismic response analyses was investigated. In connection with this correlation, as a result of examination of the correlation between LPI and the seismic vulnerability of the levee, it was concluded that the method for evaluation of the seismic vulnerability of the Korean river levee using LPI is applicable.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

KNEE: Basic Science and Injury of Bone (슬관절 주위 글격의 기초과학 및 스포츠 손상)

  • Kim Hee-Chun
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 2003
  • Purpose: The biomechanics and kinematics of knee joint were reviewed in this article. And then the common sports injuries were presented. Anatomy and Kinetics: None of the pairs of bearing surfaces in the knee joint is exactly congruent This allows the knee six degrees of freedom of motion. Tibiofemoral Kinematics: In flexion and extension, the axis of motion is not perpendicular to the medial-lateral plane of the joint, nor is it perpendicular to the axis of longitudinal rotation. This results in coupled varus angulation and internal rotation with flexion and in valgus angulation and external rotation with extension. Patellofemoral Articulation: Loads across the patellofemoral joint are indirectly related to the angle of knee flexion and directly related to the force generated within the quadriceps mechanism. Fractures of the Patella: Nonoperative treatment is indicated if the extensor mechanism is intact and if displacement of fragment is minimal. The specific type of internal fixation depends on the fracture pattern. It is important to repair retinaculum. Acute and Recurrent Patellar Instability: The degree of dysplasia and the extent of the instability play a large part in determining the success of nonoperative treatment. Patients who experience recurrent dislocations and patients with major anatomic variations require surgery to minimize their instability. Sports Injuries in School-age Atheletes: Patellar pain in young athletes groups a number of conditions, including Idiopathic Adolescent Anterior Knee Pain, Osgood- Schlatter Disease, and Sinding-Larsen-Johansson Disease.

  • PDF

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Voronoi Grain-Based Distinct Element Modeling of Thermally Induced Fracture Slip: DECOVALEX-2023 Task G (Benchmark Simulation) (Voronoi 입자기반 개별요소모델을 이용한 암석 균열의 열에 의한 미끄러짐 해석: 국제공동연구 DECOVALEX-2023 Task G(Benchmark simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.593-609
    • /
    • 2021
  • We proposed a numerical method for the thermo-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) and simulated thermally induced fracture slip. The present study is the benchmark simulation performed as part of DECOVALEX-2023 Task G, which aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as an assembly of Voronoi grains and calculated the interaction of the grains (blocks) and their interfaces (contacts) using a distinct element code, 3DEC. Based on an equivalent continuum approach, the micro-parameters of grains and contacts were determined to reproduce rock as an elastic material. Then, the behavior of the fracture embedded in the rock was characterized by the contacts with Coulomb shear strength and tensile strength. In the benchmark simulation, we quantitatively examined the effects of the boundary stress and thermal stress due to heat conduction on fracture behavior, focusing on the mechanism of thermally induced fracture slip. The simulation results showed that the developed numerical model reasonably reproduced the thermal expansion and thermal stress increment, the fracture stress and displacement and the effect of boundary condition. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Sedimentary Characteristics and Evolution History of Chenier, Gomso-Bay tidal Flat, Western Coast of Korea (황해 곰소만 조간대에 발달한 Chenier의 퇴적학적 특성과 진화)

  • 장진호;전승수
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.212-228
    • /
    • 1993
  • A chenier, about 860 m long, 30 to 60 m wide and 0.6∼1.6 m high, occurs on the upper muddy tidal flat in the Gomso bay, western coast of Korea, It consists of medium to fine sands and shells with small amounts of subangular gravels. Vertical sections across the chenier show gently landward dipping stratifications which include small-scale cross-bedded sets. the most probable source of the chenier is considered to be the intertidal sandy sediments. Vibracores taken along a line transversing the tidal flat reveal that the intertidal sand deposits are more than 5 m thick near the low-water line and become thinner toward the chenier. The most sand deposits are undertrain by tidal muds which occur behind the chenier as salt marsh deposits. C-14 age dating suggests that the sand deposits and the chenier are younger than about 1,800 years B.P. The chenier has originated from the intertidal sand shoals at the lower to mid sand flat, and has continuously moved landward. A series of aerial photographs (1967∼1989) reveal that intertidal sand shoals (predecessor of the western part of chenier) on the mid flat have continuously moved landward during the past two decades and ultimately attached to the eastern part of the chenier already anchored at the present position in the late 1960s. Repeated measurements (four times between 1991 and 1992) of morphological changes of the chenier indicate that the eastern two thirds of the chenier, mostly above the mean high water, has rarely moved whereas the western remainder below the mean high water, has moved continuously at a rate of 0.5 m/mo during the last two years (1991∼1992). This displacement rate has been considerably accelerated up to 1.0 m/mo in winter, and during a few days of typhoon in the summer of 1992 the displacement amounted to about 8∼11 m/mo for the entire chenier. these facts suggest that macro-tidal currents, coupled with winter-storm waves and infrequent strong typhoons, should play a major role for the formation and migration of chenier after 1,800 B.P., when the sea level already rose to the present position and thereafter remained constant.

  • PDF