• Title/Summary/Keyword: coupled buildings

Search Result 150, Processing Time 0.025 seconds

Application of Hybrid Structural System Using Coupled Vibration Control Structure and Seismic Isolated Structure in High-Rise Building

  • Nakajima, Shunsuke
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • This building is a forty-eight story, 170 meters high multiple dwelling house with Dual Frame System (DFS), a coupled vibration system connecting two independent structures with hydraulic dampers. Generation of large deformation between two structures during earthquakes contributes to make the hydraulic dampers effective. To improve the aseismic performance more, this building adopts DFS hybrid system that consists of DFS and base isolation system. About typical floors, columns and beams are constructed with LRV precast concrete method that shorten the construction period greatly by integrating column-beam joints in column members.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations

  • Qu, Y.G.;Wu, H.;Xu, Z.Y.;Liu, X.;Dong, Z.F.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.397-416
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part II, based on the verified finite element (FE) models of aircrafts Airbus A320 and A380, as well as the NPP containment and auxiliary buildings in Part I of this paper, the whole collision process is reproduced numerically by adopting the coupled missile-target interaction approach with the finite element code LS-DYNA. The impact induced damage of NPP plant under four impact locations of containment (cylinder, air intake, conical roof and PCS water tank) and two impact locations of auxiliary buildings (exterior wall and roof of spent fuel pool room) are evaluated. Furthermore, by considering the inner structures in the containment and raft foundation of NPP, the structural vibration analyses are conducted under two impact locations (middle height of cylinder, main control room in the auxiliary buildings). It indicates that, within the discussed scenarios, NPP structures can withstand the impact of both two aircrafts, while the functionality of internal equipment on higher floors will be affected to some extent under impact induced vibrations, and A380 aircraft will cause more serious structural damage and vibrations than A320 aircraft. The present work can provide helpful references to assess the safety of the structures and inner equipment of NPP plant under commercial aircraft impact.

Design Parameter of a New Type Bi-directional Damper Using a Tuned Liquid Column Damper and a Tuned Sloshing Damper (TLCD와 TSD를 이용한 새로운 형태의 양방향 감쇠기 설계변수)

  • Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.850-856
    • /
    • 2009
  • A new type bi-directional damper using a tuned liquid column damper(TLCD) and a tuned sloshing damper(TSD) is introduced in this study. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with one damper. One of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TSD. Another objective is to address the effect of coupled control force due to TLCD and TSD on the dynamic characteristic of the damper based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of the damper under white noise excitation. Its dynamic characteristic is expressed by the transfer function from the shaking table acceleration to the control force generated from the damper. Finally, its design parameters are identified based on the coupled dynamics, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, the participation factor of the fundamental liquid sloshing for a TSD and damping ratio for both cases.

The Steel Coupling Beam-Wall Connections Strength

  • Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.135-145
    • /
    • 2006
  • In high multistory reinforced concrete buildings, coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic effects. Coupled shear walls are usually built over the whole height of the building and re laid out either as a series of walls coupled by beams and/or slabs or a central core structure with openings to accommodate doors, elevators walls, windows and corridors. A number of recent studies have focused on examining the seismic response of concrete, steel, and composite coupling beams. However, since no specific equations are available for computing the bearing strength of steel coupling beam-wall connections, it is necessary to develop such strength equations. There were carried out analytical and experimental studies to develop the strength equations of steel coupling beam-connections. Experiments were conducted to determine the factors influencing the bearing strength of the steel coupling beam-wall connection. The results of the proposed equations were in good agreement with both test results and other test data from the literature. Finally, this paper provides background for design guidelines that include a design model to calculate the bearing strength of steel coupling beam-wall connections.

Performance Simulation of Ground-Coupled Heat Pump(GCHP) System for a Detached House (단독주택 적용 지열 히트펌프 시스템의 성능 분석)

  • Sohn, Byong-Hu;Choi, Jong-Min;Choi, Hang-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.392-399
    • /
    • 2011
  • Ground-coupled heat pump(GCHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some work related to performance evaluation of GCHP systems for commercial buildings has been done, relatively little has been reported on the residential applications. The aim of this study is to evaluate the cooling and heating performances of a vertical GCHP system applied to an artificial detached house($117\;m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, borehole diameter, and ground thermal properties, etc. The cooling and heating performance simulation of the system was conducted with different prediction times of 8760 hours and 240 months. The performance characteristics including seasonal system COP, average annual power consumption, and temperature variations related to ground heat exchanger were calculated and compared.

Investigation of the link beam length of a coupled steel plate shear wall

  • Gholhaki, M.;Ghadaksaz, M.B.
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.107-125
    • /
    • 2016
  • Steel shear wall system has been used in recent years in tall buildings due to its appropriate behavior advantages such as stiffness, high strength, economic feasibility and high energy absorption capability. Coupled steel plate shear walls consist of two steel shear walls that are connected to each other by steel link beam at each floor level. In this article the frames of 3, 10, and 15 of (C-SPSW) floor with rigid connection were considered in three different lengths of 1.25, 2.5 and 3.75 meters and link beams with plastic section modulus of 100% to the panel beam at each floor level and analyzed using three pairs of accelerograms based on nonlinear dynamic analysis through ABAQUS software and then the performance of walls and link beams at base shear, drift, the period of structure, degree of coupling (DC) and dissipated energy evaluated. The results show that the (C-SPSW) system base shear increases with a decrease in the link beam length, and the drift, main period and dissipated energy of structure decreases. Also the link beam length has different effects on parameters of coupling degrees.

International high-frequency base balance benchmark study

  • Holmes, John D.;Tse, Tim K.T.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.457-471
    • /
    • 2014
  • A summary of the main results from an international comparative study for the high-frequency base balance is given. Two buildings were specified - a 'basic' and an 'advanced' building. The latter had more complex dynamic response with coupled modes of vibration. The predicted base moments generally showed good agreement amongst the participating groups, but less good agreement was found for the roof accelerations which are dominated by the resonant response, and subject to measurement errors for the generalized force spectra, to varying mode shape correction techniques, and different methods used for combining acceleration components.

A simplified model proposal for non-linear analysis of buildings

  • Abdul Rahim Halimi;Kanat Burak Bozdogan
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.353-364
    • /
    • 2023
  • In this study, a method has been proposed for the static and dynamic nonlinear analysis of multi-storey buildings, which takes into account the contribution of axial deformations in vertical load-bearing elements, which are especially important in tall and narrow structures. Shear deformations on the shear walls were also taken into account in the study. The presented method takes into account the effects that are not considered in the fishbone and flexural-shear beam models developed in the literature. In the Fishbone model, only frame systems are modeled. In the flexural shear beam model developed for shear wall systems, shear deformations and axial deformations in the walls are neglected. Unlike the literature, with the model proposed in this study, both shear deformations in the walls and axial deformations in the columns and walls are taken into account. In the proposed model, multi-storey building is represented as a sandwich beam consisting of Timoshenko beams pieced together with a double-hinged beam. At each storey, the total moment capacities of the frame beams and the coupled beams in the coupled shear walls are represented as the equivalent shear capacity. On the other hand, The sums of individual columns and walls moment at the relevant floor level are represented as equivalent moment capacity at that floor level. At the end of the study, examples were solved to show the suitability of the proposed method in this study. The SAP2000 program is employed in analyses. In a conclusion, it is observed that among the solved examples, the proposed sandwich beam model gives good results. As can be seen from these results, it is seen that the presented method, especially in terms of base shear force, gives very close results to the detailed finite element method.

Temporal Characteristics of Volatile Organic Compounds in Newly-Constructed Residential Buildings: Concentration and Source

  • Shin, Seung-Ho;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.169-176
    • /
    • 2013
  • The present study was designed to examine the concentrations, emission rates, and source characteristics of a variety of volatile organic compounds (VOCs) in 30 newly-constructed apartment buildings by measuring indoor and outdoor VOC concentrations over a 2-year period. For comparison, seven villa-type houses were also surveyed for indoor and outdoor VOC concentrations over a 3-month period. Indoor and outdoor air samples were collected on Tenax-TA adsorbent and analyzed using a gas chromatograph (GC)/mass spectrometer system or a GC/flame ionization detector system coupled to a thermal desorption system. The long-term change in indoor VOC concentrations depended on the type of VOCs. Generally, aromatic (except for naphthalene), aliphatic, and terpene compounds exhibited a gradual deceasing trend over the 2-year follow-up period. However, the indoor concentrations of the six halogenated VOCs did not significantly vary with time changes. Similar to these halogenated VOCs, the indoor naphthalene concentrations did not vary significantly with time changes over the 2-year period. Unlike the halogenated VOCs, the indoor naphthalene concentrations were much higher than the outdoor concentrations. The indoor concentrations of aliphatic and aromatic compounds were higher for the villa-type houses when compared to those of apartment buildings. In addition, four source groups (floor coverings and interior painting, household products, wood paneling and furniture, moth repellents) and three source groups (floor coverings and interior painting, household products, and moth repellents) were considered as potential VOC sources inside apartment buildings for the first- and second-year post-occupancy stages, respectively.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.