• Title/Summary/Keyword: coupled analysis

Search Result 4,183, Processing Time 0.04 seconds

Multi-objective Optimization of Butterfly Valve using the Coupled-Field Analysis and the Statistical Method (연성해석과 통계적 방법을 이용한 Butterfly Valve의 다목적 최적설계)

  • 배인환;이동화;박영철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.127-134
    • /
    • 2004
  • It is difficult to have the existing structural optimization using coupled field analysis from CFD to structure analysis when the structure is influenced of fluid. Therefore in an initial model of this study after doing parameter design from the background of shape using topology optimization. and it is making a approximation formula using by the CFD-structure coupled-field analysis and design of experiment. By using this result, we conducted multi-objective optimization. We could confirm efficiency of stochastic method applicable in the scene of structure reliability design to be needed multi-objective optimization. And we presented a way of design that could overcome the time and space restriction in structural design such as the butterfly valve with the less experiment.

Seismic analysis of dam-foundation-reservoir coupled system using direct coupling method

  • Mandal, Angshuman;Maity, Damodar
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.393-414
    • /
    • 2019
  • This paper presents seismic analysis of concrete gravity dams considering soil-structure-fluid interaction. Displacement based plane strain finite element formulation is considered for the dam and foundation domain whereas pressure based finite element formulation is considered for the reservoir domain. A direct coupling method has been adopted to obtain the interaction effects among the dam, foundation and reservoir domain to obtain the dynamic responses of the dam. An efficient absorbing boundary condition has been implemented at the truncation surfaces of the foundation and reservoir domains. A parametric study has been carried out considering each domain separately and collectively based on natural frequencies, crest displacement and stress at the neck level of the dam body. The combined frequency of the entire coupled system is very less than that of the each individual sub-system. The crest displacement and neck level stresses of the dam shows prominent enhancement when coupling effect is taken into consideration. These outcomes suggest that a complete coupled analysis is necessary to obtain the actual responses of the concrete gravity dam. The developed methodology can easily be implemented in finite element code for analyzing the coupled problem to obtain the desired responses of the individual subdomains.

Deep Excavation and Groundwater;Effects on Surrounding Environment (지반굴착과 지하수;주변영향 평가 측면에서의 고찰)

  • Yu, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.15-26
    • /
    • 2005
  • This paper concerns the assessment of impact of deep excavation on surrounding environment with emphasis on the groundwater lowering. Fundamentals of ground excavation and groundwater interaction were reviewed and the stress-pore pressure coupled analysis approach as a tool for assessment was introduced. A case study concerning the use of coupled analysis for deep excavation design was presented. Implications of the finding from from this study were discussed.

  • PDF

Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling (NATM 터널의 응력-간극수압 연계 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.189-198
    • /
    • 2006
  • This paper concerns the finite element (FE) modeling approach for NATM tunneling in water bearing ground within the framework of stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as soil-water characteristics, location of hydraulic boundary conditions, the way of modeling drainage flow, among others. The results indicate that the soil-water characteristics plays the most important role in the tunneling-induced settlement characteristics. Based on the results, modeling guidelines were suggested for stress-pore prssure coupled finite element modeling of NATM tunneling.

  • PDF

Dynamic analysis of bending-torsion coupled vibration of non-symmetric beam (비대칭 보의 굽힘-비틀림 연성 진동 해석)

  • 강병식;홍성욱;박중윤;조용주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.220-225
    • /
    • 2001
  • Asymmetric beams cause complicated vibration phenomena due to the inherent bending-torsion coupled vibration. In this paper, an exact dynamic element matrix for the bending-torsion coupled vibration of asymmetric beam is derived. An application of the derived exact dynamic element matrix is demonstrated by an illustrative example, wherein the natural frequencies by the proposed modeling method are compared with those available in the literature. Another numerical example is also illustrated which deals with a general beam with joints. The numerical study shows that the exact dynamic element model is useful for the dynamic analysis of asymmetric bending-torsion coupled beams.

  • PDF

Stress Analysis on Weld Zone of Railway Bogie Frame Using Coupling Model (커플링 모델을 이용한 대차프레임 용접부 응력 해석)

  • Jung, Soon-Chul;Jun, Hyun-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.830-835
    • /
    • 2007
  • In this paper, stress analyses using shell and solid elements on weld zone of railway bogie frame were performed. To calculate stress distribution on weld zone, a coupling model using shell and solid elements was suggested. For this purpose, we performed specimen analyses on T-type solid and shell model of T-type panels which were modeled using shell elements, solid elements and coupled elements, respectively. The result showed that the stress concentration at weld zone was occurred in solid model, but it didn't occur in shell model. And the stress distribution of coupled model was similar to that of solid model. Also, we applied the coupled modeling method on the analysis on weld zone of bogie frame. The stress distribution of coupled model showed much higher compared to that of shell only model. Therefore, the coupled model method is highly recommended for the stress analysis in weld zone of bogie frame.

  • PDF

Hypersonic Panel Flutter Analysis Using Coupled CFD-CSD Method

  • Tran, Thanh Toan;Kim, Dong-Huyn;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.171-177
    • /
    • 2011
  • In this paper, a square simply supported panel flutter have been considered at high supersonic flow by using coupled fluid-structure (FSI) analysis that based on time domain method. The Reynolds-Average Navier Stokes (RANS) equation with Spalart-Allmaras turbulent model were applied for unsteady flow problems of panel flutter. A fully implicit time marching schemed based on the Newmark direct integration method is used for calculating the coupled aeroelastic governing equations of it. In addition, the SOL 145 solver of MSC.NASTRAN was used to investigate flutter velocity based on PK-method of Piston theory. Our numerical results indicated that there is a good agreement result between Piston Theory in MSC.NASTRAN and coupled fluid-structure analysis.

  • PDF

Numerical Study on the Coupled Responses of the Steel Lazy Wave Riser (SLWR) Based on the Basis of Design and Moored FPSO (BoD 기반의 Steel Lazy Wave Riser(SLWR)와 계류된 FPSO와의 연성해석에 관한 수치해석 연구)

  • Kwon, Yong-Ju;Nam, Bo Woo;Park, Byeong-Won;Oh, Seung-Hoon;Jung, Jae-Hwan;Jung, Dongho
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.344-352
    • /
    • 2019
  • A coupled analysis was performed between the riser to develop oil and gas in ultra-deepwater and the moored floating body. In general, the safety of the riser is conservatively evaluated by considering the maximum offset excluding the coupled analysis with the floating body. In this study, the safety of the riser was analyzed by considering the coupled motion analysis of the moored floating body. The riser is considered steel lazy wave riser (SLWR) applied in the deep sea, and the floating body is determined to FPSO. The methodology was presented on coupled and uncoupled analysis. The coupled effects were analyzed according to the incident wave headings in intact and damaged conditions of mooring lines. The tension of mooring lines, the motion of the floating body, and riser responses were analyzed according to the loading conditions.

An Assessment on the Preliminary Coupled Load Analysis Results for Advanced Low Earth Orbit Earth Observation Satellite (고성능 저궤도 지구관측위성의 예비연성하중 해석결과에 대한 평가)

  • Kim, Kyung-Won;Lim, Jae-Hyuk;Kim, Sun-Won;Kim, Chang-Ho;Kim, Sung-Hoon;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.94-100
    • /
    • 2011
  • In this paper, an assessment on the preliminary coupled load analysis results for advanced Low Earth Orbit Earth Observation satellite was performed. Spacecraft FE-model was converted into Craig-Bampton model consisting of mass matrix, stiffness matrix, acceleration transformation matrix, displacement transformation matrix, and it was delivered to the launch vehicle developer. Launch vehicle developer performed a coupled load analysis with launch vehicle model and spacecraft Craig-Bampton model, and the coupled load analysis results were provided to us. From the assessment on the analysis results, it was verified that spacecraft is safe under launch environment.

Analysis on Current Limiting Characteristics of Transformer Type SFCL with Additionally Coupled Circuit

  • Lim, Seung-Taek;Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.533-539
    • /
    • 2018
  • In this paper, the transformer type superconducting fault current limiter (SFCL) with additionally coupled circuit was suggested and its peak fault current limiting characteristics due to the fault condition to affect the fault current were analyzed through the fault current limiting tests. The suggested transformer type SFCL is basically identical to the previous transformer type SFCL except for the additional coupled circuit. The additional coupled circuit, which consists of the magnetically coupled winding to the primary and the secondary windings together with another superconducting element and is connected in parallel with the secondary winding of the transformer type SFCL, is contributed to the peak fault current limiting operation for the larger transient fault current directly after the fault occurrence. To confirm the fault current limiting operation of the suggested SFCL, the fault current limiting tests of the suggested SFCL were performed and its effective peak fault current limiting characteristics were analyzed through the analysis on the electrical equivalent circuit.