• Title/Summary/Keyword: counterflow flames

Search Result 127, Processing Time 0.021 seconds

A Numerical Study on the Extinction of Methane/Air Counterflow Premixed Flames (대향류 메탄/공기 예혼합화염의 소염특성에 관한 수치해석적 연구)

  • 정대헌;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1982-1988
    • /
    • 1995
  • Methane/Air premixed flames are studied numerically, using a detailed chemical model, to investigate the flame strech effects on the extinction in a counterflow. The finite difference method, time integration and modified Newton iteration are used, and adaptive grid technique and grid smoothing have been employed to adjust the grid system according to the spatial steepness of the solution profiles. Results show that the flame stretch, or the conventional nondimensionalized stretch having the tangential flow characteristics of the stretched flame alone cannot adequately describes the extinction phenomena. On the other hand, the local flame stretch having both the normal and tangential flow characteristics of the stretched flame can give a proper explanation to the extinction of the symmetric planar premixed flames stabilized in a counter flow. The extinction condition were found to be a constant local stretch regardless of the equivalence ratio.

The Influence of $C_2HCl_3$ on the $CH_4/Air$ Counterflow Nonpremixed Flames (메탄/공기 대향류 비예혼합화염에서 $C_2HCl_3$의 영향)

  • Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.41-50
    • /
    • 1998
  • Numerical simulations of nonpremixed $CH_4/C_2HCl_3$(Trichloroethylene, TCE)/Air flames are conducted at atmospheric pressure in order to understand the effect of hydrocabon bound chlorine on methane/air flames. A chemical kinetic mechanism is employed, the adopted scheme involving 48 gas-phase species and 445 elementray reaction steps containing 223 backward reactions. The calculated temperature, velocity, and critical strain rate are compared with the experiments for the flame (16.1% TCE by Vol.) estabilished at a strain rate of $175s^{-1}$. Whereas there is overall good agreement between predictions and the measurements, it appears that the critical strain rate is higher than measured, and some areas of further refinement in the kinetic mechanism are required.

  • PDF

Edge Flame propagation for Twin Premixed Counterflow Slot Burner (대향류 슬롯 버너에서 이중 예혼합 선단화염의 전파특성)

  • Clayton, David B.;Cha, Min-Suk;Ronney, Paul D.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.60-64
    • /
    • 2006
  • Propagation rates ($U_{edge}$) of various premixed, twin edge-flames were measured as a function of global strain rate ($\sigma$), mixture strength, and Lewis number (Le). Using a counterflow slot-jet burner with electrical heaters at each end, both advancing (positive $U_{edge}$) and retreating (negative $U_{edge}$) edge-flames can be studied as they propagate along the long dimension of the burner. Experimental results are presented for premixed methane/air twin flames in terms of the effects of $\sigma$ on $U_{edge}$. Both low-$\sigma$ and high-$\sigma$ extinction limits were discovered for all mixtures tested. As a result, the domain of edge-flame stability was obtained in terms of heat loss factor and normalized flame thickness, and comparison with the numerical result of other researchers was also made. For low ($CH_4/O_2/CO_2$) and high ($C_3H_8$/air) Lewis number cases, propagation rates clearly show a strong dependence on Le.

  • PDF

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

Edge Flame propagation for Twin Premixed Counterflow Slot Burner (대향류 슬롯 버너에서 이중 예혼합 선단화염의 전파특성)

  • Clayton, David B.;Cha, Min-Suk;Ronney, Paul D.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • Propagation rates ($U_{edge}$) of various premixed, twin edge-flames were measured as a function of global strain rate ($\sigma$), mixture strength, and Lewis number (Le). Using a counterflow slot-jet burner with electrical heaters at each end, both advancing (positive $U_{edge}$) and retreating (negative $U_{edge}$) edge-flames can be studied as they propagate along the long dimension of the burner. Experimental results are presented for premixed methane/air twin flames in terms of the effects of $\sigma$ on $U_{edge}$. Both low-$\sigma$ and high-$\sigma$ extinction limits were discovered for all mixtures tested. As a result, the domain of edge-flame stability was obtained in terms of heat loss factor and normalized flame thickness, and comparison with the numerical result of other researchers was also made. For low ($CH_4/O_2/CO_2$) and high ($C_{3}H_{8}$/air) Lewis number cases, propagation rates clearly show a strong dependence on Le.

  • PDF

A Study on Transition of Flame Extinction at Low Strain Rate Counterflow Flames (저신장율 대향류화염에서 화염소화에 있어서 천이에 대한 연구)

  • Park, Dae-Geun;Park, Jeong;Kim, Jeong-Soo;Bae, Dae-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.197-201
    • /
    • 2009
  • Experiments were conducted to study the transition of shrinking flame disk to flame hole in counterflow diffusion flames. The studies of transition are well described by varying burner diameters, global strain rate and velocity ratio. It is experimentally verified that radial conduction heat loss is affected at even high strain rate flames for appropriately small burner diameters. It is also shown that flame extinction modes are grouped into three and particularly, hole or stripe is observed in sufficiently high strain rate flames. There exists critical radius according to burner diameter which divide flame extinction modes into three parts.

  • PDF

Fundamental Studies on NOx Emission Characteristics in a Dimethyl Ether/Air Nonpremixed Flame (DME/Air 비예혼합화염의 NOx 생성 특성에 관한 기초 연구)

  • Kim, Tae-Hyun;Kim, Jong-Hyun;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1973-1978
    • /
    • 2008
  • The NOx emission characteristics of DME in counterflow nonpremixed flames were investigated numerically, and brief experiments were carried out to compare the flame shapes and NOx emissions with those of $C_3H_8$ and $C_2H_6$. The DME flames were calculated using Kaiser's mechanism, while the $C_2H_6$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show that DME flame has the characteristics of partial premixed flame and the flame length becomes very shorter compared with general hydrocarbon fuels and then, the NOx emission of DME is low as much as 60% of $C_3H_8$. In the calculated results of counterflow nonpremixed flames, the EINO of DME nonpremixed flame is low as much as 50% of the $C_2H_6$ nonpremixed flame. The cause of $EI_{NO}$ reduction is attributed mainly to the characteristics of partial premixed flame due to the existence of O atom in DME and partly to the O-C bond in DME, instead of C-C bond in hydrocarbon fuels.

  • PDF

NOx Emission Characteristics of Dimethyl Ether/Air Nonpremixed Flames (DME/Air 비예혼합화염의 NOx 생성특성)

  • Hwang, Cheol-Hong;Kum, Sung-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.926-935
    • /
    • 2007
  • The NOx emission characteristics of DME in laminar coaxial jet and counterflow nonpremixed flames were investigated using experimental and numerical approaches, respectively. The flame structure and NOx emission of DME were compared with those of $C_2H_6$ and $C_3H_8$. The DME flame was calculated using the Kaiser's mechanism, while the $C_2H_6$ and $C_3H_8$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show in coaxial jet flame that DME flame has the characteristics of partial premixed flame and the flame length decreases up to 1/3 than that of $C_3H_8$ in the same condition of fuel mass flowrate. Then, the NOx emission of DME decreases to 40% approximately, comparing with that of $C_3H_8$. In the calculated results of counterflow nonpremixed flame, DME flame shows the $EI_{NO}$ decreases up to 50% approximately than those of$ C_2H_6$ and $C_3H_8$ flames when the equivalent fuels are consumed per unit mass and time. Although the overall NOx reaction path of DME is similar with other hydrocarbon fuels, it can be identified that DME flame has a distinct NO reduction mechanism due to the reburning NO chemistry in fuel rich region. From these results, we can conclude that the different NOx emission characteristics of DME flame with other hydrocarbon fuels are attributed to not the temperature increase and the activation of NO reactions due to O atom in DME fuel but the rapid processes of pyrolysis/oxidation.

Computation of Nonpremixed Methane-Air Flames in Microgravity II. Radius and Thickness of Flame (무중력에서의 비예혼합 메탄-공기 화염의 전산 II. 화염의 반경과 두께)

  • Park Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.124-129
    • /
    • 2004
  • To evaluate the numerical method in simulation of diffusion flames and to see the effects of strain rate and fuel concentration on the flame radius and thickness, the nonpremixed methane-air counterflow flames in microgravity were simulated axisymmetrically by using the MST Fire Dynamics Simulator (FDS). The $1000^{\circ}C$ based flame radius and thickness were investigated for the mole fraction of methane in the fuel stream, $X_m=20,\;50,\;and\;80\%$ and the global strain rates $a_g=20,\;60,\;and\;90s^{-1}$ for each mole fraction. The flame radius increased with the global strain rate while the flame thickness decreased linearly as the global strain rate increased. The flame radius decreased as the mole fraction increased, but it was not so sensitive to the mole fraction compared with the global strain rate. Since there was good agreement in the nondimensional flame thickness obtained with OPPDIF and FDS respectively, it was confirmed that FDS is capable of predicting well the counterflow flames in a wide range of strain rate and fuel concentration.

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.