• Title/Summary/Keyword: coulomb friction

검색결과 228건 처리시간 0.022초

예측. 신경망 제어기를 이용한 유연 기계 시스템의 운동제어 (Motion Control of Flexible Mechanical Systems Using Predictive & Neural Controller)

  • 김정석;이시복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 1995
  • Joint flexibilities and frictional uncertainties are known to be a major cause of performance degration in motion control systems. This paper investigates the modeling and compensation of these undesired effects. A hybrid controller, which consists of a predictive controller and a neural network controller, is designed to overcome these undesired effects. Also learning scheme for friction uncertainies, which don't interfere with feedback controller dynamics, is discussed. Through simulation works with two inetia-torsional spring system having Coulomb friction, the effectiveness of the proposed hybrid controller was tested. The proposed predictive & neural network hybrid controller shows better performance over one when only predictive controller used.

  • PDF

마찰지진격리장치와 구조물의 응답제어: 강체질량모델에서의 적용 (Response Control of Structure by Frictional Base Isolation System : Rigid-Mass Model)

  • 김재관;이원주;김영중;김병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.426-431
    • /
    • 2001
  • Seismic performance of base isolated rigid-mass model were studied through shaking table tests. Friction pendulum systems (FPS), pure-friction systems with laminated rubber bearing (LRB) were selected for the comparison of performance. Performance of specially designed isolation systems were tested statically using actuator and dynamically using shaking table. Numerical methods were developed to simulate the nonlinear behavior of the frictional base isolation systems. Two models were considered. one is modified Bouc-Wen model considering breakaway coefficient of friction and the other is classical Coulomb model. The results of numerical methods are found to be in very good agreement with test results.

  • PDF

공진효과 및 클롱마찰이 있는 서보 시스템의 $H_{\infty}$ 위치 제어기 설계 ($H_{\infty}$ Position Controller Design for Servo Systems Containing Resonance Effects and Coulomb Friction)

  • 홍국남;임동진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.720-725
    • /
    • 1995
  • The most important problems which should be considered in designing servo controllers are resonance effects and nonlinear friction. These problems exist in almost all the servo systems, especially for the robotic maniplators and numerical control systems and cause difficulties in designing controllers. In this paper, controller design procedure which employs $H_{\infty}$ control theory is proposed for the servo systems with these problems. Sometimes, for these systems, there is a possibility of limit cycles due to the interation between the nonlinear friction and integrator. To check the possibility of limit cycles, describing fuction method is used.

  • PDF

이산 TDCIM과 이산 PID 제어기 사이의 관계 규명 (Identification of the Relationship Between the Discrete TDCIM and the Discrete PID Controller)

  • 박상현;정의인;신동관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.23-28
    • /
    • 2017
  • Time-delay control with internal model (TDCIM) is the controller for robot manipulators that applies the time-delay estimation and the concept of internal model control (IMC). TDCIM is robust against unknown dynamics and non-linear friction like coulomb friction and static friction. It is simple and computationally efficient. This study presents the relationship between the discrete TDCIM and the discrete PID controller. The PID controller is the most popular control law in the real application. But often the PID controller can be difficult to achieve the desired level of control performance. The result in this study provides a good candidate solution to these situations.

탈선 후 화물열차의 겹판스프링 동적특성 연구 (A Study of Dynamic Characteristic of the Leaf Spring for Freight Wagon After the Derailment)

  • 이응신;이장무
    • 한국철도학회논문집
    • /
    • 제7권1호
    • /
    • pp.49-54
    • /
    • 2004
  • Particularly derailing freight wagon, which are loaded with dangerous chemicals, has large damages on humans and environment. In this paper the dynamic characteristic of the laminated leaf spring under extreme situation, for example derailment, is examined. The leaf spring has a static hysteresis. Not only the friction value, but also the spring rate are influenced by this hysteresis characteristic. Because of the static hysteresis of the leaf spring the spring rate must be used in normal operation depending upon the loading and the kind of the excitation with the up to 10-fold value of the static spring rate. Some characteristics of the leaf spring can be treated like well-known viscous damping, but fer special situation (preload and/or excitation) particular calculation are necessary.

유연관절을 갖고 있는 로보트를 위한 LQ 컴퓨터 제어의 강인성과 최적성에 관한 연구 (A study on the robustness and optimality of a LQ computer control for a manipulator with flexible joints)

  • 김진화;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.149-154
    • /
    • 1990
  • In this paper, simulation results of a robust digital tracking controller on a robotic manipulator are presented. The objective is to follow a ramp reference input with zero steady state error in the presence of a disturbance and system parameter variations. Some of the difficulties are caused by the Coulomb frictions, the disturbance due to the gravitational pull, the spring effect of a link between the drive motor and the manipulator arm. Another difficulty is that, because of the non-differentiable Coulomb friction, the digital control system cannot be represented as a discrete system. It is thus necessary to design the controller based on a discrete-continuous hybrid model. The controller is based on feeding back the state variables and augmenting the system by addition discrete integrators. The feedback gain parameters are obtained by applying the quadratic optimal control theory and then choosing the new weighting matrices to eliminate the limit cycle by using the describing function method for hybrid system.

  • PDF

Dynamic impedance of a 3×3 pile-group system: Soil plasticity effects

  • Gheddar, Kamal;Sbartai, Badreddine;Messioud, Salah;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.377-386
    • /
    • 2022
  • This paper considers dynamic impedance functions and presents a detailed analysis of the soil plasticity influence on the pile-group foundation dynamic response. A three-dimensional finite element model is proposed, and a calculation method considering the time domain is detailed for the nonlinear dynamic impedance functions. The soil mass is modeled as continuum elastoplastic solid using the Mohr-Coulomb shear failure criterion. The piles are modeled as continuum solids and the slab as a structural plate-type element. Quiet boundaries are implemented to avoid wave reflection on the boundaries. The model and method of analysis are validated by comparison with those published on literature. Numerical results are presented in terms of horizontal and vertical nonlinear dynamic impedances as a function of the shear soil parameters (cohesion and internal friction angle), pile spacing ratio and frequencies of the dynamic signal.

엑스플리시트 시간 적분 유한요소법을 이용한 고속 성형 해석 (I) -마찰 및 관성 효과- (An Analysis of High Speed Forming Using the Explicit Time Integration Finite Element Method (I) -Effects of Friction and Inertia Force-)

  • 유요한;정동택
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 1991
  • 본 연구에서는 고속 대변형 탄소성 변형 과정을 해석할 수 있는 프로그램(NET )을 개발하고 이것을 실린더 및 링 성형 문제에 적용하여 마찰 및 관성 효과가 변형 거동에 미치는 영향을 규명하여 보았다.

충격햄머드릴의 타격력 향상을 위한 연구 (A Study on Improving the Impact Force of Impact Hammer Drill)

  • 김재환;정재천;박병규;백복현
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.669-679
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism and an experimental comparison of the numerical simulation results was followed. Optimization of the impact mechanism was also performed. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder including the friction force. The friction is considered as a combination of Coulomb friction and viscous damping friction. At the moment of impact, an ideal impact model that uses restitution coefficient is used to calculate the sudden change of the striker motion. The numerically simulated impact force shows a good agreement with the experimental result and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the used design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to manitain normal operation of the hammer drill are considered as constraints. The optimized result show a remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

로봇 매니퓰레이터를 위한 시간지연추정과 내부모델개념을 결합한 강인제어기에 관한 연구 (Robust Trajectory Control of Robot Manipulators Using Time Delay Estimation and Internal Model Concept)

  • 조건래;장평훈;정제형
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1075-1086
    • /
    • 2004
  • In this paper, Time Delay Control(TDC) for robot manipulators is analyzed and its problems are founded. In order to remedy the problems, the enhanced controller is proposed and analyzed. The effect of friction associated with TDC is reported and its cause is presented. Through the analysis, simulation and experiment, it is shown that the friction effect causes serious degradation in control performance and that it is a result of the error of Time Delay Estimation(TDE) in TDC. In order to remedy the problems, TDC combined with Internal Model Control(IMC) concept is proposed. The proposed compensator is effective enough to handle the bad effect of friction, and is so simple and efficient as to match positive attribute of TDC. The simulation and experimental results show the effectiveness of proposed controller against the friction of the robot manipulators.